
Comments on KornaiEmmanuel RocheMitsubishi Electric Research Laboratories201 BroadwayCambridge, MA 02179roche@merl.comAs observed in the announcement of this workshop, thebulk of actual language processing is in fact of �nite-state na-ture (see [6]). A. Kornai presents here an information extrac-tion task for which �nite-state processing outperforms morepowerful formalisms both in terms of accuracy and, not sur-prisingly, in terms of speed e�ciency. The key for buildingaccurate devices is to use a very simple formalism which al-lows the linguist to focus on syntactic constraints in a naturalway and at the right level of lexical detail. Kornai introduceshere Vectorized FSAs (VFSAs) which are shown to be verywell adapted for information extraction from natural languagetexts.As pointed out by the author, VFSAs are closely relatedto Register Vector Grammars (RVGs) [1]. [1] argued that theuse of vector based FSA allows more compact representationsof language related structures while retaining the runtime ef-�ciency of �nite-state processing. This earlier work was veryintriguing but it also posed a number of unanswered ques-tions. From a practical point of view it was not clear whetherthis formalism could be used to design realistic size grammars.The examples given in [1] were not very convincing in thatrespect, experiments were performed on small size grammars(Tomita's 220 rule grammar).Kornai's �rst contribution is to show that vectorized FSA isin fact a natural answer to a practical language problem. Theability to use several layers of information for a given word(the word itself, morphological features, whether it belongsto a speci�c lexicon, etc) is indeed crucial for the design ofinformation extraction devices.From this information extraction point of view, Kornai'swork is related, among others, to [7] and [4] for which VF-SAs also provide a possible formal framework. In fact, both[7, 4], use the simplicity of automata design to draw preciserestricted grammars. Their grammars, as well as Kornai's,are restricted in two ways: they focus on very speci�c prob-lems within restricted domains and they don't require thesentence to be parsed in full. While [7] and [4] initially built�nite-state automata whose transitions were purely lexical,they later added the possibility for a transition to match var-ious types of information (the word, the canonical form ofthe word, morphological features, whether it belongs to spe-cial lexicon or conjunctions of any of the above). While theirwork has also been formalized in a di�erent way [5], VFSAsprovide a natural and elegant framework for this type of task.From a more formal point of view, VFSAs as well as RVG,

relate to more traditional �nite-state automata and �nite-state transducers in many ways. The �rst similarity is betweenthe runtime application of VFSAs and the lookup of an inputsequence into the intersection of several automata computeddynamically. In fact, in the particular case were the featuresare independent, the vectorized FSAs are similar to the in-tersection of several automata, each applying to each featureindependently. It is therefore an important contribution fromKornai to show that features should be interdependent; thiswas not so clear from Blank's original paper in which the com-pactness of RVG often comes from the fact that while RVGsimplicitly represented intersections, these intersections werenot precomputed statically but rather they were computeddynamically at runtime which is where most of the compact-ness came from.It is however unlikely that various linguist practitionerswill switch from their formalism to VFSA for the sole for-mal elegance so it is probably important to be able to useVFSAs in conjunction with more traditional �nite-state ma-chines. Moreover, vector based FSAs are compact and naturalin particular situations while more traditional FSMs remainvery well adapted for a huge number of simple tasks; it wouldbe natural to use both simultaneously. Obviously it is possibleto do simple things like computing the intersection betweena vectorized FSA and a classical FSA. However, in doing so,state information and vector values have to be handled inde-pendently. It seems that FSAs could be extended with vectorsby considering the state as one variable and by adding otherfeatures (i.e. variables, dimensions). From this perspective,VFSAs are related to push-down automata and push-downtransducers with bounded stack as well as to non-recursiveRTNs. Doing so might provide compactness and simplicity. Infact, an automaton like the one of Figure 1 in which each letteris an abbreviation of a possibly big automaton, could becomemore compact by merging states 2 and 3 and 4 and 5 whileadding an additional feature (i.e. variable) that distinguishesthe states of F originating from 1 and those coming from 2.This could be done at design time, like in the informationextraction task presented here or as a postprocessing com-paction task. As a postprocessing task, this could be done byrepresenting the initial automaton as a string whose alphabetis a set of pairs of letters and o�sets to the arrival state1. The1 This automaton would look like :(A;+1) (END;0) (B + 2)(END;0) (F;+2) (END;0) (F;+2) (END;0) (A;+2) (END;0)(B;+1) (END;0) (END;FINAL).c 1996 E. RocheProceedings of the ECAI 96 WorkshopExtended Finite State Models of LanguageEdited by A. Kornai.



methods used to detect repeated factors in text [2, 3] couldbe applied here to detect long repeated automata such as Fin the example. Operations like determinization might alsobene�t from inserting additional variables to control spaceexpansion.
A

B

F

F

A

B
1

2

3

4

5

6Figure 1. Example of automatonFinally, several other questions come to mind. First, thepower of �nite-state computing comes from several proper-ties; among them: runtime e�ciency and a large number offormal operations which allow both to build complexes de-vices from simple ones and to check formal properties of agiven �nite-state machine. Kornai's contribution shows thatVFSAs achieve fast run-time performances (does it scale tovery large VFSAs?), what about the possibility of buildingcomplex devices from simple ones (although intersecting VF-SAs is straightforward).A practical question: how di�cult is it to decide what setof variables should be used. Also, a critical point is to beable to debug large system, how di�cult is it to detect designmistakes? Do VFSA have a VFST counterpart?REFERENCES[1] Glenn David Blank, `A �nite and real-time processor for natu-ral language', Communications of the A.C.M., 32(10), 1174{1189, (1989).[2] A. Blumner, J. Blumner, D. Haussler, A. Ehrenfeucht, M.T.Chen, and J. Seiferas, `The smalleest automaton recognizingthe subwords of a text', Theoretical Computer Science, 40,31{55, (1985).[3] Maxime Crochemore, `Transducers and repetitions', Theoreti-cal Computer Science, 45, 63{86, (1986).[4] Maurice Gross, `The constructionof local grammars', in Finite-State Devices for Natural Language Processing, eds., Em-manuel Roche and Yves Schabes, MIT Press, (1996). Forth-coming.[5] Eric Laporte, `Experiences in lexical disambiguation using lo-cal grammars', in COMPLEX'94, Proceedings, Readings inComputational Lexicography, Budapest, (1994).[6] Finite-State Devices for Natural Language Processing, eds.,Emmanuel Roche and Yves Schabes, MIT Press, 1996. Forth-coming.[7] Max Silberztein,Dictionnaires Electroniques et Analyse Lexi-cale du Fran�cais| Le Syst�eme INTEX, Masson, 1993.Comments on Kornai 36 E. Roche


