
CONTEXT-FREE LANGUAGES. The context-free languages are per-
haps the most important class of formal languages (i.e., sets of symbol strings)
for both linguistics and computer science. There are numerous equivalent
characterizations of the class.

The standard formalization is in terms of a type of rewriting system
known as a context-free phrase structure grammar (henceforth CFG). CFGs
were introduced by Noam Chomsky in the 1950s to reconstruct the practice of
much earlier traditional and structuralist syntactic description (see Chomsky
1959 for a mathematical treatment) — though Chomsky did not use the term
“context-free,” calling the relevant systems Type 2 grammars.

A CFG is a system of rules that, intuitively, say things like ‘a noun
phrase may consist of an article followed by a noun’, or ‘a complement clause
may consist of the word that followed by a finite clause’, or ‘an intransitive
verb may consist solely of an instance of the word expire’. Such rules may be
given in the form α→ ϕ, where α being a single nonterminal (i.e., a category
symbol like NP for ‘noun phrase’) and ϕ is a string of zero or more symbols
that may be either nonterminals or terminals (i.e., words in the language).
The standard interpretation of rules of this kind (another interpretation is
discussed below) is as an instruction to take a string XαY (where X and Y
can be anything, and are not specified as part of the rule) and change it to
XϕY .

When such rules are applied to a special nonterminal known as the start
symbol, and reapplied to the resultant string recursively, in some cases a
string entirely composed of terminals will be derived. A CFG generates, or
defines as well formed, all and only those strings of terminals that can be
derived through some combination of applications of the rewriting rules. A
set of strings of terminals is a context-free language (henceforth, CFL) iff
there is some CFG that generates exactly that set.

To give a simple example, CFGs can define mirror-image structure: the
set of all even-length letter strings over some finite alphabet in which the
second half is an exact repetition of the first in the opposite order (i.e., the
set of all palindromes over the relevant alphabet) is a CFL. To take another
example, if we take the left and right parentheses ‘(’ and ‘)’ as our terminals
and we assume the five rules {S → LR, S → LSR, S → SS, L→ (, R → )},
with S as the start symbol, then the set of strings generated is the set of
all properly matched strings of parentheses, such as ‘((()))()(())’, so that
language is also a CFL.

To take a more interesting example, the set of all properly formed HTML

1



documents (web page files) with arbitrary text is a CFL. An HTML document
(with arbitrary text content) has this sort of structure:

<HTML> <HEAD> <TITLE>Jane Doe’s Home Page</TITLE> </HEAD>

<BODY> <H1>Jane Doe</H1> <H2>Home Page</H2> <P>

<CENTER><IMG src="jane.jpg"></CENTER></P> </BODY> </HTML>

The expression <HTML> must be followed by </HTML>, <HEAD> must be fol-
lowed by </HEAD>, and so on, in the same pattern as matched parentheses.
Thus recognizing that a string belongs to a certain CFL is one of the tasks
performed by a web browser.

The CFLs may be characterized in a way that is independent of gram-
mars. → Automata are abstract machines defined to accept certain inputs
and to fail to accept others. A nondeterministic pushdown stack automaton
(NPDA) is a nondeterministic automaton with a ‘last-in, first-out’ memory
access. A set of strings if a CFL iff there is some NPDA that accepts all and
only the strings in that set. (This result was obtained in the early 1960s by N.
Chomsky and M. P. Schützenberger, and independently by R. J. Evey). De-
terministic pushdown automata (DPDAs), which in every configuration have
only one move that is legal, define a different and smaller class of languages,
the deterministic CFLs, which have considerable importance in computer
science.

CFG rules do not have to be interpreted as defining rewriting operations
on strings. McCawley (1968) suggested that a rule ‘A → BC’ can be inter-
preted as a template that is matched by pieces of trees, namely any pieces
consisting of a node labeled A that has two daughters, the left labeled B and
the right labeled C. We can call a tree admissible iff every node in it is either
labeled with a terminal or matches a rule. Under this interpretation, a rule
is really just a local tree (a mother node together with its daughters), and a
tree is admissible iff it is entirely composed of local trees that are members of
the set. If every node with no daughters is labelled with a terminal symbol,
the sequence of such nodes from left to right is called the yield of a tree.
Given a set of trees, their yields define a language (which may be empty). A
language is a CFL iff it is the yield of a set of trees containing all and only
finite trees admissible by some CFG.

Surprisingly, the result continues to hold even if we allow context-sensitive
rules such as A→ BC/D E in defining the admissibility of local trees: a node
in a tree labeled A with daughters labeled respectively B and C is admissible
if there is a node labeled D to its left in the tree and a node labeled E to

2



its right. The yield of all finite trees that are admissible according to some
context-sensitive grammar is still a CFL. (The original proof of this result
was by P. Stanley Peters and Robert W. Ritchie (1969[1973]), following up
on McCawley’s work.)

A closely related characterization of the CFLs uses finite state tree au-
tomata, which read trees and check the node labels. A tree is accepted by a
tree automaton iff every node in it is admissible according to the automaton’s
rules, and a set of trees is accepted if all and only the members of the set are
accepted. A set of strings is a CFL iff it is the yield of a set of trees accepted
by some finite state tree automaton.

Work in computer science around 1970 led to a result that connects the
CFLs, via tree automata, to a particular kind of logic. A logical language
can be given a semantics in which the models are trees; and the language can
be appropriately designed for making statements about trees in the linguist’s
sense, with predicates for expressing notions like ‘is labeled A’, relation sym-
bols for ‘dominates’ and ‘precedes’, and the usual quantifiers, variables, and
connectives. Such a language is first order if its quantifiers are the usual
ones ∀ and ∃, and its variables range only over nodes. A language that has
variables ranging over both nodes and finite sets of nodes is a weak monadic
second order language (‘monadic’ because one-place predicates can be quan-
tified over but polyadic relations cannot; weak because only finite sets can be
quantified over). A tree is said to satisfy a sentence of a logical language if
and only if everything the sentence entails is true of that tree. It was shown
around 1970 that a set of strings is a CFL iff it is the yield of a set T of finite
trees, and there is a sentence ψ of a monadic second-order logical language
with trees as its intended models such that ψ is satisfied by all and only and
only the members of T . This gives a characterization of the CFLs in terms
that make no reference to either grammars or automata (see Rogers 1998 for
a useful introduction to this way of looking at syntactic description).

The theory of CFLs is extremely important for theoretical linguistics.
A number of theories of syntax not originally designed to be equivalent to
context-free phrase structure grammars later turned out to be equivalent to
it. Postal (1964) claims to show that essentially all structuralist syntactic
theories were equivalent to context-free phrase structure grammar in terms
of the sets of strings they could define. It was shown in the 1960s that
several types of categorial grammars generate only CFLs, and this result has
since been extended to Lambek-style grammars (Pentus 1993). Virtually
all parsing technology for natural languages has been built around different

3



techniques for parsing CFLs (sometimes deterministic CFLs, in the sense
defined above in connection with pushdown stack automata). When a parser
intended to work on transformational grammars of a certain sort was devised
by Marcus (1980), it was later proved by Nozohoor-Farshi (1984) that such
a parser could only parse CFLs.

Postal (1964) attempted to show not only that almost all previous syn-
tactic theories were equivalent to CFG, but also that Mohawk was not a
CFL, so that those earlier theories were false and the additional power of
transformational grammars was necessary. However, the argument for the
non-CFL character of Mohawk was flawed both formally and empirically;
so were all arguments of the same sort up till the early 1980s (see Pullum
and Gazdar 1982). Generalized phrase structure grammar as described in
Gazdar, Klein, Pullum and Sag (1985) limited itself entirely to context-free
description yet was able to describe a very broad range of English syntactic
constructions. It was nonetheless eventually shown that the syntax of nat-
ural languages cannot always be appropriately modeled in terms of CFLs.
Certain phenomena have been found in natural languages that are beyond
the power of context-free → generative capacity.

In current work on→ natural language processing and→ automatic speech
recognition, stochastic CFGs are very important. A stochastic grammar has
a probability associated with each rule, and generates strings paired with
probabilities (for an introduction see Jelinek 1998).

References Chomsky, Noam (1959). On certain formal properties of gram-
mars. Information and Control 2 137–167

Chomsky, N. and M.P. Schützenberger (1963). The algebraic theory of
context-free languages. In: P. Braffort and D. Hirschberg (eds): Computer
Programming and Formal Languages 118–161 Amsterdam: North Holland

Evey, R.J. (1963). The theory and application of pushdown store machines.
In: Mathematical Linguistics and Automatic Translation, NSF-IO, 217–255.
Cambridge, MA: Harvard University

Gazdar, Gerald; Ewan Klein; Geoffrey K. Pullum; and Ivan A. Sag (1985).
Generalized Phrase Structure Grammar. Oxford: Basil Blackwell.

Jelinek, Frederic (1988) Speech Recognition by Statistical Methods. Cam-
bridge MA: MIT Press

Marcus, Mitchell P. (1980). A Theory of Syntactic Recognition for Natural
Language. Cambridge, MA: MIT Press.

4



McCawley, James D. (1968) Concerning the base component of a transformational-
generative grammar. Foundations of Language 4, 243–269.

Nozohoor-Farshi, R. (1984) Context-freeness of the language accepted by
Marcus’ parser. 25th annual Meeting of the Association for Computational
Linguistics: Proceedings of the Conference, 117–122. Menlo Park, CA: As-
sociation for Computational Linguistics.

Pentus, Mati (1993) Lambek grammars are context free. Proceedings of the
8th Annual IEEE Symposium on Logic in Computer Science 429–433, IEEE
Computer Society Press, Los Alamitos, California

Peters, P. S. and R. W. Ritchie. Context-sensitive immediate constituent
analysis — context-free languages revisited. Proceedings of the ACM Sym-
posium on Theory of Computing, 1–8. Also in Mathematical Systems Theory
6, 324–333.

Postal, Paul M. (1964) Constituent Structure: A Study of Contemporary
Models of Syntactic Description. Bloomington, IN: Publication 30, Indiana
University Research Center in Anthropology, Folklore and Linguistics.

Pullum, Geoffrey K. and Gerald Gazdar (1982) Natural languages and context-
free languages. Linguistics and Philosophy 4, 471–504.

Rogers, James. 1998. A Descriptive Approach to Language-Theoretic Com-
plexity. Stanford, CA: CSLI Publications.

Index context free grammar, context free language, deterministic con-
text free language, pushdown automata, tree automata, node admissibility,
monadic second order predicate, categorial grammar, Lambek grammar

5


