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HIDDEN MARKOV MODELS (HMMs) are stochastic finite-state
automata (or, equivalently, stochastic regular grammars) with either continuous-
valued or discrete-valued observations. HMMs have found widespread use
in automatic speech recognition, where they provide an efficient mecha-
nism for modelling speaking rate variations within a probabilistic frame-
work. An HMM computes the probability (density) Pr(x1...xT |w1...wN) of
the acoustic–phonetic model, which is the conditional probability of observ-
ing the acoustic vectors x1...xT over time t = 1, ..., T when the speaker utters
the words w1...wN . An acoustic vector xt is computed typically every 10 msec
and represents the short-term magnitude spectrum of the acoustic signal.

For a large–vocabulary system, there is typically a set of basic recognition
units that are smaller than whole words. Examples of these so–called subword
units are phonemes, demisyllables or syllables. The word models are then
obtained by concatenating the subword models according to the phonetic
transcription of the words in a pronunciation dictionary. In virtually all
systems, these subword units are modeled by HMMs.

Although the theory of HMMs applies to any structure of the finite-state
automaton, a linear arrangement of states is widely used. The states can be
interpreted as time points on a normalized time axis. To allow speaking rate
variations, there are typically three types of possible transitions by which
each state can be left: move to the next state, loop back to the same state
and skip to the next but one state. Such a structure is depicted in Fig. 1
along with the resulting trellis that shows the possible time alignment paths.

To obtain a quantitative description of an HMM, we consider the case
of whole-word models. For a given state s′ in a word model w, we have a
transition probability p(s|s′, w) for going to state s. In addition, there is
an emission probability (density) p(xt|s, w) for observing vector xt at time
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t when reaching state s in word model w. Typically, the product of the
emission and transition probabilities is used:

p(xt, s|s′;w) = p(s|s′;w) · p(xt|s;w) ,

which is the conditional probability that, given state s′ in word model w, the
acoustic vector xt is observed and the state s is reached.

Since the states are hidden, i.e. abstractions of the model used, and
cannot be observed directly, it is – from a strict statistical point of view –
necessary to sum over all possible state sequences sT1 = s1...st...sT to compute
the probability Pr(x1...xT |w):

Pr(x1...xT |w) =
∑
{sT1 }

T∏
t=1

[p(xt, st|st−1;w)]

∼= max
{sT1 }

T∏
t=1

[p(xt, st|st−1;w)]

where we have replaced the sum by the maximum. This so-called maxi-
mum or Viterbi approximation is found to be sufficient in most practical
applications. Both the sum and the maximum of all state sequences can
be computed efficiently by exploiting the first-order dependency structure
of the HMM (forward recursion for the sum, dynamic programming for the
maximum).

To estimate the free parameters of an HMM from training data, powerful
algorithms like the expectation-maximization algorithm are available, see
Jelinek (1998), Rabiner and Juang (1993). In particular, the training can be
performed in such a way that no manual segmentation of the speech signal
into words or phones is required.

The HMM approach fits directly into Bayes decision rule for automatic
speech recognition and allows the interdependence of several operations to
be handled using a single consistent criterion: identification of spoken words
(and phones), nonlinear time alignment, (implicit) segmentation of the speech
signal into phones and words, and taking into account the language model.
This approach results in a huge search space, which, however, can be handled
efficiently by dynamic programming beam search, see Ney and Ortmanns
(2000).

In addition to speech recognition, HMMs or related approaches are used
successfully also in other linguistic applications, including dynamic→ Optical
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Character Recognition, statistical → Machine Translation of (written and
spoken) language, statistical → Grammatical Tagging, and probabilistic →
Context Free Grammars.
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Figure 1: HMM and its trellis.

4


