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In mathematical linguistics, grammars model linguistic theories, and the
sets of strings that grammars generate model natural languages. More pre-
cisely, a language L(G) is a set of strings generated by a grammar G. The
power of a grammar is the difficulty of characterizing its output. The cor-
responding formal problem is the recognition problem (RP): is a given string
in a given language or not? Alternately, defining the output of a grammar
to be a set of structural descriptions results in the parsing problem: what
structural descriptions are assigned by a given grammar to a given string?

A language may be characterized in extension, by all the grammars that
generate it, or constructively, by a particular grammar that generates it.
In the first case, the fixed language RP (FLRP) is posed: given an input
string x, is x in L for some fixed language L? It does not matter which
grammar generates L: both grammar and language are fixed (ignored) in the
problem statement. In the second case, the grammar is of interest, and the
universal RP (URP) is posed: Given a grammar G and an input string x,
is x in L(G)? Because the URP determines membership with respect to a
particular grammar, it more closely models the parsing problem, which uses
a grammar to assign structural descriptions.

Problems are solved by algorithms; algorithms run on machines; machines
consume computational resources, such as time or space. Therefore, the com-
plexity of a problem is given indirectly by the algorithms that solve it. Some
problems cannot be solved by any algorithm: they are UNDECIDABLE (not
recursive) → Automata Theory.

The complexity of an algorithm is the rate at which it consumes the
computational resources of time and space, expressed as the order of growth
of a function in the size of the problem input. Orders of growth are an upper
bound on the resource requirements of an algorithm. They are useful because
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they abstract from many irrelevant details of the machine.
Algorithm complexity provides an upper bound on problem complexity:

the most efficient known algorithm for a problem gives the tightest upper
bound. Problem complexity can also be bounded from below by a reduction,
according to the theory of computational complexity.

Because the complexity of a problem is a function of its input parameters,
and because the URP includes the grammar in its input while the FLRP
does not, the complexities of the URP and FLRP can differ. For example,
the URP for generalized phrase structure grammars can require more than
exponential time, while the FLRP requires less than cubic time. The parsing
problem must be at least as hard as the URP, and the URP at least as hard
as the FLRP, by definition.

Computational complexity theory is a mathematical theory of the intrin-
sic lower-bound difficulty of obtaining the solution to a problem no matter
how the solution is obtained. It classifies problems according to the amount
of computational resources (in our case, time or space) needed to solve them
on a given abstract machine. Four important complexity classes are P , NP ,
PSPACE, and EXPPOLY.
P is the natural and important class of problems solvable in deterministic

Polynomial time, that is, on a deterministic Turing machine in time nj for
some integer j, where n denotes the size of the problem to be solved. P
is considered to be the class of problems that can be solved efficiently. For
example, sorting takes n · log n time in the worst case using a variety of
algorithms, and therefore is efficiently solvable. The URP for both context-
free and regular grammars is in P .
NP is the class of all problems solvable in N ondeterministic Polynomial

time. Informally, a problem is in NP if one can guess an answer to the
problem and then verify its correctness in polynomial time. For example,
the problem of deciding whether a whole number i is composite is in NP
because it can be solved by guessing a pair of potential divisors, each less
than d

√
ie, and then quickly checking if their product equals i.

PSPACE is the class of problems solvable in deterministic polynomial
space. PSPACE contains NP because polynomial space allows us to simu-
late an entire NP computation, but it is not known if the inclusion is proper.
Intuitively, PSPACE is the class of combinatorial two-person games: it in-
cludes the problems of winning generalized versions of Checkers, Go, and
Parker Brothers’ Instant Insanity(TM). Many problems in formal language
theory are known to be PSPACE-complete, such as finite state automaton
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inequivalence and intersection and the FLRP for context-sensitive languages.
NSPACE[s(n)] is the class of problems solvable in nondeterministic space

that grows with s(n). In particular, the URP for Context-Sensitive Gram-
mars is NSPACE[n] (requires linear nondeterministic space, see Kuroda 1964).
Therefore the closure of CSLs under complementation follows from the theo-
rem that NSPACE[s(n)]=co-NSPACE[s(n)] for s(n)≥ log(n), see Immerman
(1988), Szelepcsényi (1987) .

Finally, EXPPOLY is the class of problems solvable in deterministic time
cf(n) for any constant c and polynomial f(n) in n. This class includes
PSPACE, and EXP (that is, all exponential time problems), and so includes
problems that are provably intractable.

We say a problem T is C-hard if T is at least as hard computationally as
any problem in the complexity class C. Note that T need not be in C to be
C-hard. A problem is C-complete if it is both C-hard and included in C.

NP-complete problems can be solved only by methods too slow for even
the fastest computers. Since it is widely believed, though not proved, that
no faster methods of solution can ever be found for these problems, NP-
complete problems are considered the easiest computationally intractable
problems. The URP for many formal linguistic theories is intractable (see
chart).

Complexity classifications are established with the proof technique of re-
duction. A reduction converts instances of a problem T of known complexity
into instances of a problem S whose complexity we wish to determine. The
reduction operates in polynomial time. Therefore, if we had a polynomial
time algorithm for solving S, then we could also solve T in polynomial time,
simply by converting instances of T into S. (This follows because the compo-
sition of two polynomial time functions is also polynomial time.) Formally,
if we choose T to be NP-complete, then a polynomial time reduction from T
to S shows that S is at least as hard as T , or NP-hard. If we were also to
prove that S was in NP , then S would be NP-complete.
Linguistic Model Complexity of URP (proof)

Aspects transformational grammar model Undecidable (Peters-Ritchie, 1973)
Restricted Aspects model EXP-hard (Rounds, 1975)
Lexical-functional grammar NP-hard (Berwick, 1982)
Generalized phrase structure grammar EXPPOLY-hard (Ristad, 1986)
Revised generalized phrase structure grammar NP-complete (Ristad, 1986)
Context-free grammar P-complete (Jones-Laaser, 1974)
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