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Zipf´s law and its modification possibilities 
 

Victor Kromer1 
 
 

Abstract. In this paper we consider the possibilities of known Zipf-Mandelbrot canonical law 
modifications. The proposed modifications explain the behavior of the right tail of the distribution and 
the presence of a deflection in the central part of the distribution (a crater). It is shown that the average 
word information load is invariant to the sample heterogeneity and that the proposed usage measure 
"places" the words more correctly with regard to their "importance".  
 
 
Keywords: crater, packing density, resolving power, usage measure, Zipf´s law 
 
 
At present many empirical and theoretical expressions for describing the relationship between 
the word frequency (absolute or relative) or the word probability and word number in a 
sequence ranked on the decrease of frequency are known. The most simple relationship of a 
similar kind is called by right Zipf´s Law (classical one-parameter Zipf's distribution) and 
relates word rank r and word probability pr: 

r

K
pr = , (1)

where K is the coefficient of proportionality. This relationship, theoretically justified by 
B. Mandelbrot as a corollary of an optimal coding process, is titled as Zipf-Mandelbrot 
canonical law and has a more generalized nature: 

γ)( Br

K
pr +

= , (2)

where B and γ  are distribution parameters. Later on Ju.K. Orlov showed that the relationship 
of type (2) at 1=γ  (Orlov, 1978, pp. 85, 89) holds for the so-called "optimum" or "Zipf's" 
samples, basically representing complete texts of separate literary productions. The size of an 
optimal sample, as a rule, lies within a rather narrow range giving no way to use formula (2) 
for describing mixed or truncated samples. The researchers offered various corrections to the 
formula (2), in an effort to describe similar samples, strongly differing in their frequency 
structure from the optimum sample structure. Any correction increases the number of 
parameters in the resulting formula and therefore allows achieving a better agreement 
between the empirical relationship and the theoretical one. However, the degree of agreement 
cannot be a decisive factor in favor of one or another theoretical distribution, since: (i) 
Formulas like (2) and more sophisticated ones describe in fact word probability distribution 
not in a sample, but in the general population. The actual word frequency distribution of the 
sample is determined by Poisson's law and can be described by the formula which is 
appropriate for describing word frequencies distribution in the general population, only by an 
                                                           
1 Address correspondence to: V. Kromer, Viljujskaja ul., 28, NGPU, Novosibirsk, 630126, Russia. E-
mail: applied@nspu.ru. URL: http://kromer.newmail.ru. 
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artificial modification of formula parameters in order to account for the peculiarities of 
empirical distribution caused by Poisson's law action. (ii) With an increase of the sample size 
any theoretical distribution, even the best one, should be rejected by goodness-of-fit test. The 
cause of discrepancies consists in the fact that in large samples many subsidiary conditions 
come along which are not taken into account by the theoretical distribution. In samples of a 
smaller size manifestation of the same neglected factors could be explained by fluctuations. 

In view of the aforesaid, the kinds of corrections, which take into account actual 
cognitive processes, which are related to text generation and text selection and have linguistic 
meaning, are the most valuable ones (considering their pithiness and prognostic strength). The 
"right tail" of the distribution, as it is called � the range of high ranks (low frequencies) is of 
special interest for researchers. It is the practice to describe this area by the spectral analog of 
rank distribution, called Pareto's law: 

αF

A
mF = , (3)

where mF  is the number of sample words, having frequency F, and A and α are distribution 
parameters. 

The relation between distributions like (2) and (3) was repeatedly mentioned in the 
literature (Tuldava, 1987, p. 86). The expressions (2) and (3) are two forms of the same 

relationship, with parameter values related by the expression 
γ

α 1
1+=  (and accordingly 

1

1

−
=

α
γ ); (Tuldava, 1987, p. 88). The value 2=α  of Pareto's law parameter corresponds to 

the value 1=γ , offered by Zipf. The given values are the most typical ones for linguistic 
samples. The value of parameter γ, falling in the range of 0.8�1.2 (depending on the language, 
genre, author etc.) corresponds to the α-parameter varying within the range of 1.83�2.25. The 
value 1=α  corresponds to the inversely proportional relationship between frequency and the 
number of words with the given frequency. Considering the number of words with the given 
frequency to be a frequency (frequency of frequencies) and ranking groups of words with 
identical frequency, we can assign rank 1 to the most numerous group ( 11 =F ), rank 2 to the 
next group ( 22 =F ) etc.; then expression (3) appears to be identical to expression (1) 
providing F is the rank, and the α-value is equal to 1. (This condition is met only in the range 
of not very high frequencies, when all frequency values are presented in the sample).  

As at 1→α  the corresponding value of ∞→γ , the rank-frequency relationship 
cannot be described by power law relation (2) and another kind of expression is required. It 
can be obtained by integrating expression (3). Let us assign the rank r(F) to the first word in 
rank distribution with given frequency F, and rank r(F-1) to the first word with frequency (F-
1). (From here on r is the traditional word rank, i.e. word number in the list of words ranked 
on decreasing frequency). The ratio between the increment of rank and the increment of 

frequency is F
F

FF

m
m

FF

rr

F

r −=
−

=
−−

−=
∆
∆ −

1)1(

)()1(

. Considering r and F as continuous variables 

and changing from differences to differentials, we obtain Fm
dF

dr− . At 1=α  we obtain 

 

F

A

dF

dr −= , (4)
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whence it follows that 

lnr A F C= − + , (5)

where C is the constant of integration. Solving equation (5) for F, we obtain 

Are

ACe
F

/

/
= . (6)

Passing to probabilities, we obtain 

rArr
d

M

e

M
p == , (7)

where Aed 1=  is a constant, slightly exceeding 1, and M is the normalizing coefficient. 
Expression (7) is frequently used for describing rank-frequency distribution of small 

inventory units (alphabet signs, phonemes, DNA codons etc.). Expression (7) is unsuitable for 
describing lexical frequency structure of texts. At the same time expression (7) has an 
interesting peculiarity. Let's find the information load (negative entropy) of a word (measured 
in nits2) at rank r providing the word distribution is in accordance with (7): 

1ln ln ln ln
r

r
r

dI r d M
p M

= = = − . (8)

The first derivative of Ir with respect to r makes d
dr

dIr ln= . This value has the meaning of 

information distance between adjacent units of the rank distribution. The inverse is the 

formerly defined (Kromer, 1997a, p. 29) packing density 
1 1

lnr

D
dI dr d

= =  of units 

(words). As is obvious, the vocabulary packing density for distribution (7) is constant. Zipf´s 
law in its canonical form (2) does not limit this characteristic feature with increasing word 

rank, as 
γ
Br

DZ
+= , which can be proved by finding logarithm and differentiating 

expression (2). 
There is a supposition that psychophysical relations, valid for elementary sensual acts 

(sight, hearing, sense of touch) can be extended to more intricate aspects of mental activity, 
for example to processes of unfamiliar vocabulary perception and preservation (Kondrat'eva, 
1972, p. 40). Let's extend these relations to processes of text generation and text perception 
(as in the course of text generation the author anticipates the possibility of text perception by 
the recipient), as well as to processes of texts selection (compiling of reading-books, 
anthologies, text corpora etc.) (Kromer, 1999a). Now suppose there exists a hypothetical 
expression, based on (2) and expressing rank-frequency relation in view of some limitations. 
It is well known that quantitative properties of human memory (and, maybe, collective 
memory properties) are limited. In particular, maximum word information load is limited 
(Piotrovskij et al., 1997, p. 94).  

The suggestion has been made that a person's ability to resolve individual word 
probabilities on the allocated information space is also limited, and this feature is 
characterized, as we suppose, by the maximum vocabulary packing density. This performance 

                                                           
2 1 nit = e2log =1.443 bit 
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has the meaning of a resolving power (RP), similar to RP of sight, hearing etc. The limitless 
RP of Zipf´s law encounters restrictions imposed by a particular language, sublanguage, 
idiolect. A crude expression relates RP of a complex system and its separate components 
(Prochorov, 1984, p. 615): 

∑
=

=
n

i is RR 1

11 , (9)

where n is the number of system components, Rs is system RP, and Ri is RP of the ith system 
component. The above expression at 2=n  is valid, in particular, for RP of an optical device 
made up of an optical system (lens) and a receiver (for example, a light-sensitive layer). Let's 
designate as DL the limiting vocabulary packing density of a particular language. Then the 
following expression would be correct: 

LZs DDD

111 += , (10)

where DZ stands for vocabulary packing density, given by Zipf´s law in its canonical form (2). 
Ds is the vocabulary-packing density of the complex system "canonical Zipf´s law � particular 
language". Let's pass to corresponding information distances: 

L

s

DBrdr

dI 1+
+

= γ . (11)

By integrating (11) we can find Is � word information load in accordance with the sought-for 
hypothetical expression, reflecting rank distribution of the complex system: 

1 ln ( )s
s

L L

dI rI dr dr r B C
dr r B D D

γ γ
 
 = = + = + + + +  

∫ ∫ ,  (12)

where C is the integration constant. As ss pI ln−= , where ps stands for word probability in 
the complex system, we can deduce the expression for ps by transforming: 

( )rDCI
s

Ls eBreep 1)( −−−− +== γ . (13)

Substituting constants Ce−  for K and LDe 1−  for z, and designating probability as pr, we obtain 
the following expression: 

γ)( Br

Kz
p

r

r +
= . (14)

This expression is known as canonical law with J. Woronczak's correction (Woronczak, 1967, 
p. 2226). The additional parameter 1<z  assures faster decreasing of function (14) in 
comparison with function (2) and specifies behavior of the distribution "right tail". Thus, 
Woronczak's correction gains confirmation in the context of the proposed supposition about 
extending of known psychophysical relations to intricate aspects of mental activity. 

Besides "right tail", the empirical distribution is characterized by one more peculiarity, 
labeled as "crater" (Kromer, 1997a, p. 22). The mentioned peculiarity is most common for 
mixed samples. The availability of the crater in the distribution can be revealed on the graph 
of rank�frequency distribution, plotted on double logarithmic axes. However, the crater 
availability is more explicit by using a special form of data displaying, if the logarithm of the 
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rank is plotted along the axis of abcissas and the product of the rank by relative frequency 
along the axis of ordinates. This form of data displaying (Ne�itoj, 1987) has some advantages, 
such as graph compactness in vertical direction (the second bisectrix of the traditional 
coordinate system "logarithm of rank � logarithm of frequency" is mapped in the new 
coordinate system as a horizontal line). As an example we calculated for the text corpus of 
Frequency Dictionary of Russian Language � FDRL (Zasorina, 1977), comprising 1,056,382 
running words, the value of rfrG ⋅= , where r stands for word rank, and fr stands for relative 
word frequency, computed as ratio of absolute frequency to the sample size. The calculation 
results are depicted in graphic form in Figure 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. rrfG = -value as a function of rank r for FDRL 
 
From the graphic data it can be seen that the graph of rrfG =  for FDRL is 

characterized by the presence of a crater (deflection in the central part of the distribution). The 
similar deflection is also characteristic for other mixed samples (text corpora) distributions. 
According to Ne�itoj (1987, p. 125) unimodalness of such a curve is an evidence of sample 
homogeneity. The research of horizontal word�frequency distribution on genre groups of 
texts has been carried out in effort to reveal the mechanism for crater formation in the 
distribution. The authors of FDRL distinguished 4 genres (styles): newspaper writing, drama 
texts, scientific and publicistic texts, belles lettres (fiction). The coefficient of skewness of the 
horizontal distribution was calculated for the 11,576 most frequent words of FDRL (with 
frequency equal and exceeding 7). The smoothing of the coefficient of skewness was carried 
out with the intent to get generalized characteristics of particular frequency spectrum parts. 
The frequency distribution proves to be right-handed and can be characterized by a skewness 
coefficient of about 0.8. The sample frequencies were replaced by a special function of 

frequency (SFF) � the sum of first Fj terms of harmonic series jF++++ …
3

1

2

1
1 , where Fj is 

the frequency of a particular word (lemma) in the sample of the genre under consideration 
(Kromer, 1997b). The value of SFF, equal to 0, corresponds to 0=jF  by definition. The 
skewness of SFF distribution (after smoothing) appears to be very close to 0. Since the sum of 
harmonic series is expressed by the psi-function (the logarithmic derivative of an Euler's 
integral of the second kind) as CFj ++ )1(ψ , where …5772,0=C  is Euler's constant, we can 



Victor Kromer 6 

say that the horizontal distribution of psi-function of frequency increased by unity is 
symmetric on the average. 

Examination of SFF excess coefficient reveals that the horizontal SFF distribution is 
approximately uniform at the beginning of rank distribution (up to ranks about 600). Then the 
distribution peakedness increases, i.e. the density of SFF-values increases at the center of 
horizontal distribution, and as a first approximation it is possible to consider the SFF 
distribution as a normal (Gaussian) one. This conclusion, regarding special features of word 
probabilities in horizontal distribution, goes back to Arapov�s (1988, p. 54) suggestion to 
consider language as a set of coordinated vocabularies. The sum of harmonic series over the 
range of sufficiently high frequencies can be given by approximate expression 

1

1 ln
jF

j
k

F C
k=

≈ +∑ . (15)

Subtracting from the right and left sides of equation (15) the constant Nln  (where N stands 
for genre sample size) and rearranging Euler's constant C to the left equation side, we obtain: 

1

1 (ln ) ln ln ln ln
jF

j
j j

k

F
N C F N f

k N=

− + = − = =∑ , (16)

where 
N

F
f

j
j=  is the relative frequency of the word with absolute frequency Fj. The dis-

tribution of the left side of equation (16), differing from (15) by the constant value 
)(ln CN + , would be normal, providing the distribution (15) is normal. Based upon the 

normality of horizontal SFF distribution, with high frequencies the logarithm of the relative 
frequency is distributed normally as well, i.e. the relative frequency of words has logarithmic-
normal (lognormal) horizontal distribution. What was said regarding horizontal distribution 
evidently can be extended to word probabilities. The essence of the model offered in (Kromer, 
1997c, p. 20) is the assumption that it is not the word probability which is distributed in 
accordance with Zipf-Mandelbrot law, but the exponential function of the mathematical 
expectation of word probability logarithm: 

exp( (ln ))
( )r

KM p
r B γ=

+
, (17)

where )(lnrpM  is the mathematical expectation of word probability logarithm. As for the 
probability logarithms themselves, their horizontal distribution is characterized by dispersion 

2
horσ , where σhor is the standard deviation of probability logarithm, and it increases with 

increasing word rank. The offered model is constructed as a result of research on a text 
corpus, comprised of 4 groups of various genre texts. In reality the number of genre groups 
could be enhanced without bound, as the words probabilities in horizontal distribution do not 
assume discrete values, but are smeared-out in some range, and σhor accounts for probability 
scatter of the word under consideration.  

From the above reasoning, the mathematical expectation of word probability is 
determined by this expression (Prochorov, 1982): 

2 2

( ) exp (ln ) exp
2 ( ) 2
hor hor

r r
KM p M p

r B γ
σ σ   

= + =   +   
. (18)
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It is accepted in the model that σhor takes its minimum value at the beginning of the rank 
distribution, then these values increase with increasing word rank, establishing on some rank 
their limiting value, and then keep constant up to the end of rank distribution. The term 

2

exp
2
horσ 

 
 

 of expression (18) accounts for the approximate effect of mixed sample 

heterogeneity having regard to the offered assumption. In the general case 

)(
)(

rf
Br

K
pr γ+

= , (18')

where )(rf  is a nondescending function of r, varying from 1 to s, where 1>s  is the 
maximum value of the function. (Despite the fact that the minimum value of σhor is not equal 
to 0, the minimum value of )(rf  can be equal to 1 at the expense of the correction of the 
normalizing coefficient K).  

The chief drawback of the representation of the distribution form offered by Ne�itoj 
(1987) is the curvature at 1≠γ  in the graphs of dependencies, mapped by straight lines by the 
traditional representation. The said drawback can be eliminated by plotting along the ordinate 
axis the logarithm of rank multiplied by the frequency or the sum of rank and frequency 
logarithms. Thus, the offered representation form is the traditional one, such that the ordinates 
of the dependence points are increased by the rank logarithm (Kromer, 1999b, p. 16). It is also 
possible to plot as ordinates the ( )( ) ln ( )t

r rS F r B γ= +  value, where Fr is the word 

frequency, r is the word rank, and B and γ are the parameters of Zipf-Mandelbrot distribution 
for the initial part of the distribution. In this case the initial part of the distribution is plotted as 
a horizontal straight line. A growth of the dependence is observed in the crater domain, 
reflected by member )(rf of equation (18'). Further a horizontal plateau or decreasing part 
reflecting the increase of γ on high ranks and described by Woronczak's correction can follow. 
In practice the initial part of the distribution is polygonal at the expense of fluctuations, and 
the distribution graph is not plotted in compliance with previously known parameters γ and B, 
but those parameters are fitted with respect to the best straightening of the initial part of the 
distribution (for which parameter B is responsible) and its horizontal leveling (for which 
parameter γ is responsible). Such a graph for FDRL using estimated parameters 032.1=γ  and 

42.2=B  is plotted in Figure 2 (thin line). The parameters are estimated for the initial part of 
the distribution (words ranked from 1 up to 100). We use the concept "initial part of the 
distribution" without its explicit determination. Later on in this paper we will return to this 
concept and set a procedure providing estimation of the terminal rank of the initial part. 

The question arises of whether there exists a word feature invariant to the sample 
heterogeneity. By virtue of the assumption that the exponential function of mathematical 
expectation of word probability logarithm is distributed in line with the canonical law (17), 
the exponential function of increased word average information load (as word information 
load is equal to the inversed logarithm of probability) is distributed in accordance with the 
same law. As a consequence, 

infexp( )
( )

KI
r B γ− =

+
, (19)

where infI  is the average word information load. It is worthy of note that infI  can be estimat-
ed from the word rank using equation (19), where parameters K, B and γ are estimated for the 
initial part of rank-frequency distribution. The total word frequency in a mixed sample (and in 
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a sense all samples can be considered as mixed ones) can be used only for rank estimating, 
but not for direct estimating of average information load. The word information load, 
computed on the formula rpI lninf −=  (where pr is the probability of the word, ranked r) is 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. )(t
rS  and Sr dependencies as functions of rank r for FDRL 

 
generally underestimated, i.e. infinf II ≤ . When evaluating infI , representing the language as 
a whole on empirical data, difficulties emerge, as the mixed sample (the text corpus, 
representative for the language as a whole), should be divided into constituent homogeneous 
texts, and the information load should be evaluated for each corpus word for every constituent 
text. As not all corpus words are present in each particular text, it is not possible to evaluate 
the information load of text zero-frequency words. In addition, the estimated information load 
of words with frequency less than 5�10 is unreliable. The method of sparse data smoothing by 
way of probability redistribution (additive smoothing method) exists, that means giving some 
small probabilities to zero-frequency words and correcting the probability of low frequency 
words at the cost of decrease of the probability of high frequency words. This method consists 
in adding some constant k to all the frequencies (including the zero frequencies), and the 
probability p(i) of word occurrence in ith text is estimated relying on the maximal likelihood 
estimation method: 

kLN

kF
p

i

i
i

+
+=

)(
)( , (20)

where F(i) is word frequency in ith text, Ni is size of the ith text in running words, L is total 
number of distinct words in the text corpus (or, what we consider to be the same, number of 
potential distinct text words including zero-frequency words). For 1=k  the method is known 
as Laplace's law, for 5.0=k  � Lidstone's law (Nivre, 2000, p. 4). Dwelling on the last 
alternative, the word information load can be estimated from the corrected word probability 

LN

F
p

i

i
i

5.0

5.0)(
)(

+
+= :    
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( )
( ) ( )
1 0.5ln ln ln ( 0.5 ) ln ( 0.5)

0.5
ii

i ii i
N LI N L F

p F
+= = = + − +
+

. (21)

The average word information load in the corpus consisting of n texts yields 

( )

1 1
inf

ln ( 0.5)
ln ( 0.5 )

n n
i

i
i i

I F
I N L

n n
= =

+
= = + −

∑ ∑
. 

(22)

Expression (22) is deduced on condition that all the corpus texts are equally sized as N 
running words. 

An approximation to the sum of harmonic series closer than in expression (15), based 

on the limit 
1

1exp 0,5lim
x

kx

C x
k=→∞

  − − =    
∑  is known:  

( )

( )

1

1 ln ( 0.5)
iF

i

k
F C

k=

≈ + +∑ . (23)

Let's find the sum of SFF for each corpus word, using expression (23): 

( )

1 1
ln ( 0.5)

n n
i

i i
SFF F nC

= =

= + +∑ ∑ . (24)

As is obvious by comparison of expressions (24) and (22), the average word information load 
(providing sparse data is smoothed in accordance with Lidstone's law) and the SFF sums for 
words are related by linear transformation, so if required, the SFF sum offers an alternative to 
the average information load, and that removes the problem of text zero-frequency words, as 
SFF is equal to 0 for them. 

Let's test the assumption that the average information load of FDRL corpus words, 
represented by the SFF sum, is invariant with respect to the sample heterogeneity. The value 

4

1
( 1)

ln ( )
4

j
j

r

F С
S r B q

ψ
γ=

 + + 
= + + +
∑

, 
(25)

which is the SFF sum averaged over 4 genre samples, increased by )ln( Br+γ  for the purpose 
of dependence straightening and horizontal leveling, and by some constant q to normalize 2 
dependencies in Figure 2 (which means in this context the maximum alignment of initial parts 
of dependencies for the purpose of comparison). Before computing the SFF sum the size of 
each genre samples was corrected with respect to size inequality of genre samples by 
multiplying sample sizes by the normalizing coefficient (1.050 for newspaper texts, 0.919 for 
drama text, 1.059 for scientific and publicistic texts and 0.984 for fiction).  

Parameters γ and B of expression (25) are also estimated in order to provide the best 
straightening and horizontal leveling of the initial part of dependence Sr as a function of r. In 
general the values of those parameters differ from the like parameters of the canonical law, as 
the distributions of rFln  and SFF sum are different ones, and each of them is characterized 
by its own set of parameters. Let's show that distribution parameterization provides a way of 
estimating the size of the initial part of the distribution. The words ranked from 25 up to 500 
with a step of 25 may be considered as the potential right boundary R of the initial part of the 
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distribution. We can use the method of least square deviations for estimating the parameters 
of the trend line of the dependencies γ)(ln)( BrFS r

t
r +=  and Sr (formula 25). The trend line is 

regarded as a parabola, described by the equation 

cbxaxy ++= 2 , (26)

where rx ln=  is the abscissa, and a, b and c are coefficients. Let's consider parameters γ and 
B of the dependencies )(t

rS  and Sr as unknown ones, to be found proceeding from conditions 
0a =  (resulting in the linearity of the trend line) and 0b =  (resulting in the horizontality of 

the trend line). The estimated values of γ and B for 2 dependencies under consideration are 
presented in Table 1.  
 

Table 1 
Estimated values of γ, B and ∆γ for dependencies )(t

rS  and Sr 
 

R 25 50 75 100 125 150 175 200 225 250 
γ 0.805 0.916 0.988 1.032 1.051 1.053 1.052 1.047 1.039 1.026 )(t

rS  B 0.45 1.29 1.92 2.42 2.66 2.69 2.68 2.60 2.45 2.22 
γ 0.829 0.901 0.973 1.045 1.093 1.097 1.091 1.097 1.095 1.098 Sr B 0.41 0.94 1.53 2.31 2.92 2.97 2.89 2.98 2.94 3.01 

∆γ 0.024 -0.015 -0.015 0.013 0.042 0.044 0.039 0.050 0.056 0.072 
R 275 300 325 350 375 400 425 450 475 500 

γ 1.012 1.003 0.998 0.993 0.986 0.977 0.968 0.962 0.957 0.952 )(t
rS  B 1.97 1.79 1.69 1.60 1.45 1.26 1.10 0.98 0.87 0.76 

γ 1.099 1.091 1.083 1.074 1.064 1.056 1.047 1.040 1.033 1.027 Sr B 3.02 2.86 2.69 2.50 2.29 2.10 1.93 1.75 1.60 1.46 
∆γ 0.087 0.088 0.085 0.081 0.078 0.079 0.079 0.078 0.076 0.075 

 
According to the data of Table 1, parameters γ and B vary in a regular way in 

dependence of R. Dependence )(t
rS , associated with frequency, reveals a local maximum of γ 

at ranks about 125�175. According to Kromer (1997a, p. 31) the word ranked 136 is the 
center of the crater. The parameters γ and B of SFF sum distribution (formula (25)) reveal 
different values for the corresponding values of R, but they also vary in a regular way. The list 
of words, ranked by frequency, differs from the similar list, ranked on SFF sum, and values of 
γ in dependence of R differ for 2 distributions under consideration. The difference of γ-values 
for 2 distributions (∆γ) is of principal interest for us. It is seen from Table 1 that this dif-
ference increases monotonically, reaching saturation. Precisely this difference characterizes 
the behavior of function )(rf  (formula 18') reflecting disparity between the frequency and 
SFF sum at the expense of an increase of the variance of horizontal distribution frequency. 
According to the data of Table 1 the initial part of rank-frequency distribution includes about 
100 words, as the difference between 2 distributions (∆γ) increases at higher ranks. The graph 
of dependence Sr (SFF sum, averaged over 4 genre samples) is plotted in Figure 2 (heavy line) 
according to parameters γ and B from Table 1 estimated at rank 100. Two graphs in Figure 1 
are normalized, i.e. their initial parts are aligned as much as possible, which requires 

862.0=q  (formula 25). 
From comparison of 2 graphs it follows that the average SFF sum for the FDRL text 

corpus is not completely invariant to the sample heterogeneity (the differential between the 
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initial level and the saturation level makes 0.25 logarithmic units (LU) for the 1st graph, and 
0.09 LU for the 2nd one). The retained nonzero differential is attributable to the fact that the 
genre samples of FDRL are not completely homogeneous texts with Zipf distribution, but 
mixed samples with smaller heterogeneity degree, than that of the total text corpus. The 
graphs )(t

rS  for all 4 genre samples of FDRL are plotted in Figure 3. Parameters γ and B for 
the same 4 dependencies are presented in Table 2. The initial parts of the dependencies were 
also considered as 100 words long. The dependencies were also normalized by leveling them 
to the identical level. 

 
Table 2 

Parameters γ and B for )(t
rS  dependencies for 4 genre samples of FDRL 

 
Genre Newspaper texts Drama texts Scientific and 

publicistic texts 
Fiction 

γ 0.933 1.028 0.877 1.043 
B 1.49 1.84 0.98 2.52 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Dependence )(t
rS  as a function of r for 4 genre samples of FDRL 

 
The degree of heterogeneity of FDRL genre samples, estimated by the level dif-

ferential of the graphs, ranges from 0 up to 0.19 LU, i.e. the level differential of SFF sum 
graph for the text corpus could be completely attributed to the genre samples' inhomogeneity. 
According to Figure 3 the genre samples of drama texts and scientific and publicistic texts are 
the most homogeneous, the genre samples of newspaper texts and fiction are the most 
inhomogeneous. The parameters γ and B of all distributions were estimated using a strictly 
formalized procedure, which lends credence to the revealed empirical regularities and to the 
conclusions made on their basis. It is also well to bear in mind that graphs in Figures 2 and 3 
were plotted with respect to the ranks of word frequency or word SFF sum, and generally 
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different words are in correspondence with the particular rank. This brings up the question 
which of the two distributions under consideration (depending on frequency or SFF sum, i.e. 
on the average word information load) "places" the words more correctly with regard to their 
"importance". 

A usage measure, based on extending the known psychophysical Weber-Fechner's law 
on the process of text perception, was offered in (Kromer, 1998). It was proposed to accept 
the expression 

( )∑
=

++=
n

j
jR CFU

1

)1(ψ  (27)

as a usage measure, where n is the number of texts in the corpus, and Fj is the word frequency 
in the jth text. From the aforesaid, it might be assumed that ranking the vocabulary by usage 
measure UR is equivalent to ranking with respect to the average information load. The infI -
value is the mode of symmetric distribution of word information load in separate texts and 
thus determines the most probable word rank in the hypothetical general population of the 
sample (text corpus), which allows to consider UR as a usage measure, well suited for the 
problem of selecting words for educational dictionaries and basic dictionaries of languages 
(sublanguages) in accordance with their linguistic "importance". 
 

The author is grateful to A.A. Polikarpov for his critical reading of the manuscript and 
for useful suggestions. 
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Zipf's Law Everywhere 

Wentian Li1 
 
 
Abstract. At the 100th anniversary of the birth of George Kingsley Zipf, one striking fact about the 
statistical regularity that bears his name, Zipf's law, is that it seems to appear everywhere. We may ask 
these questions related to the ubiquity of Zipf's law: Is there a rigorous test in fitting real data to Zipf's 
law? In how many forms does  Zipf's law appear? In which fields are the data sets claiming  to exhibit 
Zipf's law? 

Keywords: Zipf´s law, ranking, language, population, internet, economics, bibliometrics, 
natural phenomena 

 
1.  Testing Zipf's law against alternative functions 
 
Claiming a Zipf's law in a data set seems to be simple enough: if n values, xi (i =1,2, �,n), are 
ranked by x1 ≥  x2 ≥ � xr  � ≥  xn, Zipf's law states, 
 

(1) ( )r
Cx
rα=  

 
where the parameter value, α, is usually close to 1, implies that the x(r) versus r plot on a log-
log scale will be a straight line with a negative slope α close to -1.  If we assume x(r) as a 
random variable, from the statistical modeling point of view, Zipf's law is a model of the 
average of x(r) or log(x(r)) as a linear function (linear regression) of log(r) (with c = log(C)): 
 
(2) ( )(log ) log( )rE x c rα= − . 
 
However, visual inspection of the log-log plot of the ranked data is not a rigorous test. What if 
another functional form fits the same data better? Indeed, there are several functions that have 
been proposed as alternatives to Zipf's law in fitting the ranked data, such as (i) the Yule 
distribution (Yule 1925): 
 

(3) ( )r r
Cx

r Bα=  

 
or in the statistical modeling framework (with c = log(C), b = log(B)):  
 

                                                 
1 Address correspondence to: Wentian Li, Center for Genomics and Human Genetics, North Shore LIJ Research 
Institute, 350 Community Drive, Manhasset, NY 11030, USA. E-mail: wli@nslij-genetics.org 
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(4) log( )
( )(log ) log( ) r
rE x c r beα= − − ; 

 
(ii) a variant of the log-normal distribution: 
 
(5) 2

( )(log ) log( ) (log( ))rE x c r b rα= − − ; 
 
or, (iii) a variant of the Weibull distribution: 
 
(6) log( )

( )(log ) log( ) r
rE x c r beβα= − − ; 

 
where 0 < β <1. 

In all three examples of an alternative function, there is a systematic modulation of the 
basic power-law structure in Zipf's law. In fact, such systematic deviation from the straight 
line in log-log plot is indeed present in some claimed Zipf's law  patterns (Piqueira et al. 
1999), which naturally causes a legitimate concern that some other claimed Zipf's laws in the 
literature may not be really Zipf's law. 

A similar caution was raised in the example of the claimed Zipf's law pattern in DNA 
oligonucleotide frequencies (Mantegna et al. 1944}. There were many criticisms of this work  
(see, e.g., Bonhoeffer et al. 1996; Israeloff, Kagalenko, and Chan 1996; Voss 1996; Li 1996). 
One of the specific criticisms is that the data could be fitted by an alternatively function, the 
Yule distribution (Martindale and Konopka 1996). 

It should be pointed out that it is not enough to reject the Zipf's law only because another 
function fits the ranked data better. The alternative function should not have too many extra 
parameters in achieving the better fit.  The topic of statistical model selection is extensively 
discussed in Burnham and Anderson (2002). It is conceivable that we may use either the 
Bayesian information criterion (BIC) (Schwarz 1976) or Akaike information criterion (AIC) 
(Akaike 1974; Parzen, Tanabe, and Kitagawa 1998) in selecting Zipf's law among 
alternatives. Some related ideas were also discussed in Quandt (1964) and Urzua (2000). 
 
 

2. Two forms of Zipf's law 
 
Besides the familiar form of Zipf's law for ranked data, there is another equivalent form of 
Zipf's law (Miller 1965). Actually, the second form is the probability density function of x(r), 
p(x). Considering this simple procedure: switch the rank r and ranked value x(r) axes, then 
reverse the direction of the x(r). The resulting plot is simply the accumulative distribution (not 
normalized) of x(r)  (see, e.g., Urzua 2000; Rousseau 2002). In mathematical expression, it is: 
 

(7) 
min( )

( ) 1 ( ) .
x

t

r x p t dt
n

= − ∫  

 
Knowing r(x), or equivalently, x(r), the probability density function p(x) can be obtained by 
 

(8) 
1( ) ( )dp x r x
n dx

=−     or,  
1

( ) ( )dp x n x r
dr

−
 =−  

. 
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It can be easily shown that the Zipf's law in Eq. (1) is equivalent to the following form of the 
probability density function of x(r): 
 

(9) 
1/

(1/ ) 1

1( ) C Ap x
n x x

α

α βα += = , 

 
with A = C1/α/nα  and β = α-1 + 1, Eq. (9) is also a power-law function. The exponent α =1 as 
proposed originally in Zipf's law leads to β = 2.  Some of the claimed Zipf's law was indeed 
illustrated as a probability density function (Axtell 2001). 
 
 
3. Phenomena claiming a Zipf's law pattern 
 
3.1. Word usage in human languages 
 
The variable x is the number of times a word is used in written human languages (Zipf 1932, 
1949; Kucera and Francis 1967). The frequency of usage can also be extended to spoken lan-
guages (Dahl 1979), non-English or non-Latin languages (Rousseau and Zhang 1992), com-
bination of words (Egghe 2000), etc. Many articles in this volume are devoted to reviews on 
this example (Rousseau 2002; Altmann 2002; Hřebíček 2002; Montemurro and Zanette 
2002). 
 
 
3.2. City populations 
 
The variable x is the number of people living in a city (Zipf 1949; Hill 1970; Ijiri and Simon 
1977; Rosen and Resnick 1980; Gabaix 1999; Knudsen 2001; Soo 2002; Brakman, Garretsen, 
and Marrewijk 2001). The Zipf's law pattern can be easily checked by obtaining large city 
population data from a World Almanac, as was done in (Gell-Mann 1994). The city 
population can also be extended to those of metropolitan area, tribal society, regional areas 
(Davis and Weinstein 2001), etc. In a recent most extensive analysis of city population in 
different countries, the exact form of Zipf's law (i.e. α = 1) was confirmed in 20 out of 73 
countries (Soo 2002). 
 
 
3.3. Webpage visits and other internet traffic data 
 
In 1997, as a webmaster for a human genetics resource site (http://linkage.rockefeller.edu/), I 
was curious about whether the number of website visits per month followed the Zipf's law 
pattern. A quick plot showed it did. Being excited, I wanted to check whether someone else 
had come up with the same idea before I started to write this up in a publication. My web 
search ended up at the computer science department of Boston University where the same 
Zipf's law pattern for webpage visits was already discovered (Cunha, Bestavros, and Crovella 
1995)! In the last few years, the study of scaling behaviors in internet traffic (with Zipf's law 
included) has become one of the hottest topics in applied computer science (Glassman 1994; 
Crovella and Bestavros 1997; Barford et al. 1999; Huberman et al. 1998; Barabasi and Albert 
1999; Breslau et al. 1999; Adamic and Huberman 2002; Mitzenmacher 2003). 
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3.4. Company sizes and other economic data 
 
This is another example of an easily obtainable data from the World Almanac. A company 
can be ranked by the number of employees, revenue, profit, market cap, as well as many other 
measurements. Such ranking can also be done within certain industry or certain geographical 
locations. The income distribution (Aitchison and Brown 1954; Samuelson 1952; Aoyama et 
al. 2000) is famously related to Pareto's law (Pareto 1896), which is frequently indistinguish-
able from the Zipf's law (the only difference being whether the α value is equal to 1 or not). 
One of the recent large-scale analyses of US company sizes is presented in (Axtell 2001). A 
constant debate on economic data is whether these are distributed as power-law (e.g. Pareto, 
Zipf) or as log-normal (Aitchison and Brown 1954; Champernowne 1953; Axtell 2001; 
Mitzenmacher 2003), or perhaps other distributions (Dagum 1984; Dragulescu and Yako-
venko 2001a,b; Azzalini and Kotz 2002}. 
 
 
3.5. Science citation and other bibliometric data 
 
Similar to the popularity of webpages, popularity of scientific papers can be measured by how 
many times it is cited by other scientists. Scientists can also be ranked by how many papers 
he/she publishes (a measure of �productivity"). Other �bibliometric" data include the fre-
quency of library items being loaned/borrowed. A pioneer of bibliometric data analysis was 
Alfred Lotka (1926). The following papers can be consulted for more details on bibliometric 
analysis: (Fairthorne 1969; Wyllys 1981; White and McCain 1989; Hertzel 1987; Egghe 
1991; Egghe and Rousseau 1990; Osareh 1996a,b; Silagadze 1997; Redner 1998}. 
 
 
3.6. Scaling in natural and physical phenomena 
 
Since it has been shown that an inverse power-law with exponent α in the ranked data is 
equivalent to an inverse power-law in the probability density function with the exponent β = 
(1/α) +1, and Zipf's law with α =1 corresponds to β = 2, we can bring many more observed 
scaling behavior (i.e. power-law behavior) (Schroeder 1991) as examples of Zipf's law. 

For example, the famous Gutenberg-Richter law states that the number of earthquakes 
whose magnitude are larger the M is an exponential function of M (Sornette et al. 1996): 
 
(10) ( ) bMN x M e−> ∝  with b ≈ 1. 
 
Note that Eq.(10) is an accumulative distribution of the probability density function, and 
earthquake magnitude is a logarithm of the energy released M ∝  log(E). It can be shown that 
the probability density function for earthquake energy according to Gutenberg-Richter law is 

1 2( ) 1/ 1/bp E E E+∝ = , same as would be predicted by the Zipf's law. 
 
 
3.7. Not all data exhibit Zipf's law 
 
Although the title of this article is �Zipf's law everywhere�, it is, of course, not literally 
everywhere. We have already shown examples where systematic deviation is present in the 
log-log plot of the ranked data (Piqueira et al. 1999; Mantegna et al. 1994). Also, when the 
size of the data (n) is small, it is usually hard to be convincing that we observe a power-law 
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function. For example, the usage of 20 amino acids in protein sequence does not follow Zipf's 
law (Gamow and Ycas 1955). The 26 letters also do not follow Zipf's law in an English text.  

If the x variable is a derived quantity (as versus a direct observable), the exponent α 
depends on how x is derived. For example, in a study to rank genes in their ability to classify 
cancer subtypes (Li and Yang 2002), the (log) likelihood under a statistical discriminant 
model is used. If this likelihood is normalized by the number of samples in the microarray 
experiment, the exponent α in the Zipf's plot will be altered. On the other hand, if a more 
direct measurement is used, it is possible to have a traditional Zipf's law (Furusawa and 
Kaneko 2003). 
 
 
4. Conclusions 
 
It is tempting to propose a universal mechanism for Zipf's law because of the impression that 
Zipf's law is everywhere. Indeed, very general mechanisms were proposed (Yule 1925; Simon 
1955), which without doubt would explain a large number of observed Zipf's law patterns (for 
a review of the explanations of Zipf's law, see, e.g., (Mitzenmacher 2003)). 

But is our impression correct? Some of the true Zipf's laws may not be even well known 
to be a Zipf's law because the data is not presented as a ranked data. As we know the second 
form of the Zipf's law, we should look for any probability density function of the form 1/x2. 
On the opposite end, many claimed Zipf's law patterns may not be true of Zipf's law after all. 
Some data might be fitted better by alternative functional forms which nevertheless were not 
looked into by researchers. 

The lesson is that we should pay attention to the data first. We may re-discover new 
dataset which exhibit Zipf's law, and at the same time, reject some claims of the Zipf's law in 
the literature. Despite my best efforts to collect all claimed Zipf's law in a webpage 
(http://linkage.rockefeller.edu/wli/zipf/), such efforts seem to be less than perfect, and there 
are always false claims and missing ones. 
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Zipf’s Tool Analogy and Word Order 
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As we proceed from the artisan down the bench we shall proceed 
from (a) the ever smaller, lighter, and more frequently used tools 
to (b) the ever larger, heavier, and less frequently used tools.   

G. K. Zipf, 1949: 62 
 
 

Abstract. This article starts with Zipf’s (1949) “Tool Analogy”, where the artisan arranges and re-
designs his tools in a way minimizing his total work; as a result, more frequently used tools tend to be 
nearer to him (better accessible), smaller and multifunctional. We then argue that short distance, small 
size and multifunctionality reflect not only a high overall relative frequency of usage, but in particular 
a high frequency of usage in the first steps of a variety of complex working procedures. Tool order – 
word order? This extended Tool Analogy fits to the tendency of more frequent words to obtain initial 
positions in frozen binomials (Fenk-Oczlon 1989) and the new finding (Fenk & Fenk-Oczlon 2002a,b) 
that the short, frequent and multifunctional function words tend to concentrate in the first part of  
sentences.  
 
 
Keywords: Zipf’s Tool Analogy, word frequency, word order, freezes, function words,   

cognitive economy, information theory 
 
 
1. Zipf’s Tool Analogy 
 
Chapter Three in Zipf (1949) starts with the explication of what he calls “Tool Analogy“ – 
“tools” in analogy e.g. to verbal expressions such as words. It is the aim of the present study 
to investigate if the arrangement of tools in Zipf’s analogy corresponds to the arrangement of 
words in phrasal conjuncts and in sentences: Tool order – word order?  

Before going on to some general remarks on the use of such analogies introduced into 
scientific communication and before investigating the potential of the Tool Analogy as an 
intelligent illustration of concrete empirical phenomena within the domain of linguistics, let 
us give a short characterization of this analogy in the words of Zipf (1949): 

An artisan “must survive by performing certain jobs for us with his tools as economically 
as possible. Beyond that we do not care. Thus we do not care how many tools he uses, nor 
how he alters their size, shape, weight, and usage, nor how he arranges them on the board, as 
long as he performs the specific fixed job with a minimum of total work” (p.58). This total 
work is the product of  f × m × d (f = frequency of usage of a certain tool, m = the mass or 
size of the tool, and d = the distance “of a given tool to be its round-trip distance to the 
artisan’s lap and return…” p. 59). “However since the artisan is obliged to use his tools with a 
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maximum economy he must arrange the n tools of his shop in such a way that the sum of all 
the products of  f × m × d for each of the n tools will be a minimum” (p.59). It is the question 
of “Close Packing” which is important, because “’close packing‘ will at all times decrease the 
d distance of the tools and thereby decrease the work of using them, regardless of the size or 
mass of the tools in the shop” (p.60). Furthermore, “there is an economy in a small size” of 
tools (p.60).  
 
“Therefore the magnitude of the Force of Abbreviation will tend to decrease in direct proportion to the 
distance of the tool from the artisan; the farther that a given tool is from the artisan, the propor-
tionately less the comparative economy will be in reducing its size by a given amount. Hence in 
redesigning his tools the artisan will lay a premium upon the reduction of the sizes of all tools in 
proportion to their nearness to him. 

As a result of the above, we may expect to find in our artisan’s shop, as a consequence of years of 
redesigning, that there will be a tendency for the sizes of tools to stand in an inverse relationship to 
their nearness to the artisan (i.e., the nearer tools will be the smaller). We shall henceforth call this 
inverse relationship between size and nearness the Principle of the Abbreviation of Size” (Zipf 
1949:61). 
 
“Furthermore, as the frequency of the easiest tool increases (while its mass decreases), the ever nearer 
to the artisan the tool will be moved because of the exigencies of the ‘minimum equation’; and the 
ever nearer to the artisan that the tool is moved the ever greater will be the Force of Abbreviation in 
reducing its size” (Zipf 1949:62). 
 
 
2. On the potential of the Tool Analogy as a cognitive-communicative tool 
 
A  general view on language as an “organon”, or as a “mental organ” or as a cognitive-com-
municative “tool” is neither new nor very concrete in detail. Much more convincing is the tool 
character of the specific analogy introduced by Zipf and the tool character of the spatial 
metaphors used by Zipf when explicating his analogy. The tools being “nearer” to the artisan 
are such a metaphor. Powers (1998:152) identifies the term “distance” in Zipf’s analogy with 
“access time”. 

Seemingly, the potential of Zipf’s analogy has not been exhausted so far. Rather recent 
findings in quantitative linguistics can be illustrated or “explained” by this analogy – at least 
if we extend it in a certain respect or make it more explicit in this certain respect: 

Most jobs to be done by our artisan – a shoemaker, a potter, a coppersmith – require not 
only a single tool, but a series of tools in a non-arbitrary order. Usually these series will start 
with rather common and unspecific tools of the handicraft in question before proceeding to 
more specified tools. Thus, the more common tools obtain not only a high overall frequency 
of usage, but especially a high frequency of usage in the first and basic steps or operations of 
a wide range of complex procedures. Special requirements and special tools, e.g. for different 
decorations of the product, follow – if at all – later in this procedure. Both of the following 
linguistic findings  can be “explained” by  the tool analogy,  if it is extended or more explicit 
in this aspect, and both of them are special cases of the rule “the more frequent before the less 
frequent”. 
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3.   Frequency as a determinant of order: more frequent words tend to be placed before 
less frequent  words! 

 
3.1. The tendency of the more frequent word to obtain the initial position in frozen 

binomials (freezes)  
 
More frequently used words are easier for the speaker to call up and more expectable for the 
hearer. In order to achieve a constant flow of linguistic information and to avoid peaks of 
information, such informationally poorer elements should be placed at those positions which 
are per se associated with higher informational content. This was the main argument for the 
hypothesis (Fenk-Oczlon 1989) that in freezes, i.e. frozen conjoined expressions or binomials, 
such as knife and fork, peak and valley, salt and pepper, the more frequent word would tend 
to obtain the initial position. The predictive power of this new rule was tested on the basis of 
400 freezes from English, Russian and German and was compared to the predictive power of 
rules previously proposed by other authors, such as “short before long”, “the first word has 
fewer initial consonants than the second”, “front vowel before back vowel”, and “semantic 
principles” (such as the me-first principle). Token frequencies of the single words constituting 
the frozen binomials were taken from Thorndike & Lorge, Josselson, Meier, Ruoff. The 
result: With 84% of the predictions being correct (i.e. 337 of 400 freezes) the new rule 
achieved by far the highest accuracy. 

In the context of the present paper, the most interesting rival in this competition was the 
rule “short word before long word”. (As we all know e.g. from Zipf’s work, there is a strong 
inverse relationship between frequency of usage and length of the respective words.) The 
result of the direct comparison: "High frequency before low frequency” scored with 337 hits, 
the rule “short before long” with only 152 hits. (To some degree, this difference is a result of 
a handicap of the latter rule; it is not applicable in cases of equal number of syllables of first 
and last word). In 145 of these 152 freezes where the word order can be “explained” by “short 
before long”, the order can as well be explained by “more frequent before less frequent”. This 
enormous overlap, together with the higher rate of hits of the frequency rule, is one of several 
arguments saying that the frequency rule represents a principle that is superordinate to the 
competing rules. 

In his “Tool Analogy” Zipf characterizes the “dynamic” interrelationship between “ease” 
(small product of m × d) and frequency as follows: “In short, greater frequency makes for 
greater ease which makes for greater frequency and so on” (Zipf 1949:62).  This formulation 
suggests that in this process of a mutual build up between increase of frequency and increase 
of “ease” the initial impulse usually will come from the variable “frequency”. 
 
 
3.2. The tendency of function words to concentrate in the first part of sentences2 
 
In an experimental study by Auer, Bacik & Fenk (2001) on the memory for sentences a text of 
Glasersfeld (1998) was presented auditorily. A tone at the end of some of the sentences (n = 
10) signalled to the subjects that they should try to immediately recall as many words as 
possible from this sentence. 

Reanalyzing the data in order to investigate word-class specific effects on recall (Fenk & 
Fenk-Oczlon 2002a) we made the following observation: In the sentences presented, function 
words (such as pronouns, articles, conjunctions,…) dominantly occurred in the first quarter of 
the sentences, whereas content word (nouns, verbs, adjectives, adverbs) did so rather in the 
                                                 
2 So far, the new empirical findings summarized in this section have only been “published” in conference  papers 
(Fenk & Fenk-Oczlon 2002a, b); a full version will follow (Fenk & Fenk-Oczlon, in preparation). 
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last (see Figure 1, left panel). This was a problem for the statistical evaluation of the recall 
scores – recall scores in absolute terms were meaningless and had to be related to the 
proportion of function words and content words occurring in the relevant portion of the 
sentence – but interesting from the point of view of quantitative linguistics. Were the 
differences found in the within-sentence distribution of function words and content words a 
specific characteristic of this one author Glasersfeld or a rather general regularity?  
 

 
 

Figure 1: Mean number of function words and content words in the first quarter (I) and in 
the last quarter (IV) of sentences 

 Left panel: Mean of 10 sentences from the author Glasersfeld (1998) 
 Right panel: Mean of 100 sentences (10 sentences from each of 10 authors) 

 
 

In order to find a first answer to this question German texts of 9 additional authors were 
analysed: 10 sentences (each third sentence of a text, where possible) from each of 4 scientific 
texts and 5 literary texts. Results are illustrated in Figure 1, right panel. Table 1 and Table 2 
present the numerical values and the significance of results. These results suggest that the 
word-class specific within-sentence distribution can be generalized for contemporary German 
texts. 
 

Table 1 
Mean frequency of function words and content words in the first quarter (I)  

versus last quarter (IV) of 100 sentences (10 sentences from each of 10 authors) 
      

 I  IV  differences 
function words 3.36  > 2.67  significant, p<1% 
content words 2.74  < 3.46  significant, p<1% 

 
Table 2 

Mean frequency of function words versus content words within the first quarter (I)  
and the last quarter (IV) of  100 sentences (10 sentences from each of 10 authors) 

      
 function 

words 
 content 

words 
 differences 

quarter I 3.36  > 2.74  significant, p<5% 
quarter IV 2.67  < 3.46  significant, p<1% 
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In connected discourse many sentences will refer to what was mentioned in the preceding 
sentences. This reference will most commonly occur in the first part of the sentence (“Thema” 
before “Rhema”, topic before comment, old before new), and function words might play a 
dominant role in this sort of reference. 

If this is an appropriate explanation for the regularity found, this regularity should not be 
restricted to German texts, but should rather be universal in its essential respect, i.e. the 
decrease of function words and increase of content words while the sentence proceeds (Table 
1). The starting points of decrease and increase will, however, vary from language to 
language, dependent, for instance, on the proportion of function words in the specific 
language. All three patterns shown in Figure 2 seem to be possible. The panel in the middle of 
Figure 2 represents the proportions found in German, and the analysis of Müller (in progress) 
indicates that the left panel might represent a pattern characterizing the proportions in Roman 
languages. 
 
 

 
 

Figure 2. Three different patterns resulting from a within-sentence decrease of function 
words and increase of content words from changing starting points. 

 

From our regularity – the within-sentence decrease of function words – we may derive a 
further regularity (Fenk & Fenk-Oczlon 2002b). In those languages, where our first regularity 
applies, the following regularity regarding the distribution of different word lengths within 
sentences will apply as well: the mean length of words will increase from the beginning to the 
end of sentences. The reason for this is that function words are not only extremely frequent, 
but also – for exactly this reason, as we  know e.g. from Zipf (1929, 1949) – relatively short. 
The prevailing of the (very frequent and therefore) rather short function words in the first part 
of sentences might contribute to or even account for Behaghel’s (1909) “Gesetz der 
wachsenden Glieder”. It would be an interesting attempt to study these regularities in bigger 
and machine-readable text corpora. 

Postponing “heavy” and “new constituents” does not only facilitate comprehension. 
Arnold et al. (2000: 28) put stress on the fact that it (also) facilitates “processes of planning 
and production”. We might add that this applies not only to the activities of speakers, but the 
planning and production processes of “other” artisans as well. Anyway: Since we are 
incessantly endeavoured to anticipate how speech will continue, when we are in the role of 
the hearer, and since, when in the role of the producer, we are always also the hearer and 
controller of our own production, producing and listening will follow very similar strategies. 
“Ease” in active planning and production will correspond to “ease” in anticipation and 
comprehension. 
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4. Concluding remarks  
 
It is a fascinating attempt to explore the heuristic potential and the implications of spatial 
analogies and spatial metaphors. The use as well as the risks of these heuristic tools – be it 
Zipf’s Tool Analogy or one of the more actual neural network analogies – lies in their graphic 
quality. We have tried to describe an additional parallel between the tool repertoire of the 
artisan and our lexical repertoire: Tool order – word order! 

In Zipf’s analogy (Zipf 1949:59) the “relative frequency“ of usage is a central term. In 
cognitive psychology, the learning of relative frequencies, or the “sensitivity” to relative fre-
quencies is also seen as a fundamental mechanism; without this mechanism we would not 
even be able to identify word units within the speech stream (Zacks & Hasher 2002:28f).   
Distributions of relative frequencies and probabilities are, moreover, the central topic of the 
“formal theory of communication”, i.e. of the information theory. This theory lacks the 
concreteness of Zipf’s Tool Analogy. To say it positively: it does not need any demons or any 
“flesh-and-blood artisan” and allows for a more general, integrative and quantitative descrip-
tion of relevant phenomena. In terms of this theory we may say: a higher frequency of the 
usage of elements goes hand in hand with both, their reduction in “size” (phonological 
complexity, duration) and informational content (“higher familiarity”, “higher accessibility”, 
“higher availability”, “lower cognitive costs”, “easier to process”). This means: less time for 
communicating less information! Thus, these reduction processes provide a “constant” and 
economic flow of linguistic information. And so does the tendency to localize those elements 
in the initial positions which carry – overall  and/or in the specific context – a lower amount 
of information: the “topic” which comes before “comment”, the “old” that comes before the 
“new”, carries low information in this context and – by ways of transitional probabilities 
(redundancy) – lowers the information of what follows – the “comment”, the “new”, or the 
second partner in a binomial. 

All the statistical laws discussed above (short before long, more frequent before less 
frequent) seem to contribute to an efficient communication by contributing to the principle or 
“covering law” of a constant flow of linguistic information. The central units of this 
rhythmically organized information flow are clauses with a relatively “constant” duration 
containing a relatively “constant” number of elements (syllables) and a relatively “constant” 
amount of information (Fenk-Oczlon & Fenk 2002: 224): Are these units, then, “packages” 
with an optimal size for cognitive “handling”? This aspect of “Close Packing” (Zipf 1949: 60) 
would be worthy of a separate study entitled “Zipf’s Tool Analogy and the optimal size of 
clauses”. 
 
 
References 
 
Arnold, J.E., Wasow, Th., Losongco, A. & Ginstrom, R.  (2000). Heaviness vs. newness: 

The effects of structural complexity and discourse status on constituent ordering. 
Language 76, 1, 28–55. 

Auer, L., Bacik, I. & Fenk, A. (2001). Die serielle Positionskurve beim Behalten echter 
Sätze. Paper presented at the 29. Österreichische Linguistiktagung, October 26-27 in 
Klagenfurt. 

Behaghel, O. (1909). Beziehungen zwischen Umfang und Reihenfolge von Satzgliedern. 
Indogermanische Forschungen 25, 110-142. 

Fenk, A. &  Fenk-Oczlon, G. (2002a). The decay of function words in the recall of sentences 
of different size. Paper presented at “Wortlängen in Texten. Internationales Sympos-
ium zur quantitativen Textanalyse”. June 21-23 in  Graz/Seggau.  



G. Fenk-Oczlon, A. Fenk 28 

Abstracts, http://www-gewi.uni-graz.at/quanta/programm.htm 
Fenk, A. & Fenk-Oczlon, G. (2002b). Funktions- und Inhaltswörter in der statistischen Bin-

nenstruktur von Sätzen. Paper presented at the 30. Österreichische Linguistiktagung, 
December 6-8 in Innsbruck. 
Abstracts, http://www.uibk.ac.at/c/c6/c604/abstract.html 

Fenk, A. & Fenk-Oczlon, G. (in press). Within-sentence distribution and retention of content 
words and function words. In P. Grzybek (ed.) Word length studies and related issues. 

Fenk-Oczlon, G. (1989). Word frequency and word order in freezes. Linguistics 27, 517–
556. 

Fenk-Oczlon, G. & Fenk, A. (2002). The clausal structure of linguistic and pre-linguistic 
behavior. In T. Givón & B. F. Malle (eds.) The evolution of language out of pre-
language: 215-229. Amsterdam: John Benjamins Publishing Company.  

Glasersfeld, E. von (1998). Konstruktivismus statt Erkenntnistheorie. In W. Dörfler & J. 
Mitterer (eds.) Ernst von Glasersfeld – Konstruktivismus statt Erkenntnistheorie: 11-
39. Klagenfurt/Celovec: Drava Verlag. 

Müller, B. (in preparation). Die statistische Verteilung von Wortlängen und Wortklassen in 
lateinischen und italienischen Sätzen. Phil. Diss., University of Klagenfurt. 

Powers, D.M.W.  (1998). Applications and explanations of Zipf’s law. In: D.M.W. Powers 
(ed.): NeMLaP3/CoNLL98: New Methods in Language Processing and Computational 
Natural Language Learning: 151-60. ACL. 

Zacks, R. T. & Hasher, L. (2002). Frequency processing: a twenty-five year perspective. In: 
P. Sedlmeier & T. Betsch (eds.) etc. frequency processing and cognition: 21-36. 
Oxford: Oxford University Press. 

Zipf, G. K. (1929). Relative frequency as a determinant of phonetic change. Harvard Studies 
in Classical Philology 40, 1-95. 

Zipf, G. K. (1949). Human behavior and the principle of least effort. An introduction to 
human ecology. Cambridge, Mass.: Addison-Wesley [2nd ed. New York: Hafner 
1972]. 

 



Glottometrics 5, 2002, 29-50       To honor G. K. Zipf 

The Unexpected Fundamental Influence of Mathematics  

upon Language 
 

         Wolfgang Hilberg1 
 
 

Abstract. The functional structure of human language networks in the brain could be revealed in an 
indirect way by measurements in the abstraction level of words. The result is a very large deter-
ministic graph or network, respectively, which was unknown in mathematics up to now. The whole 
network can only be represented in a matrix. Following Shannon's theory, it displays optimum 
properties for information processing (maximum entropy). The structure of the network can be 
subdivided by introducing word classes with increasing magnitudes which could contribute to an 
understanding of the biological generation of networks. The hypothesis is that such facts are valid for 
all natural languages. Differences will exist only in the individual distribution of matrix dots. That 
means, speaking precisely, that every language has a distinct individual network structure of its own. 
Surprisingly it can be shown that the superior general type of the universal network structure can be 
generated by statistical experiments. The properties of these networks were compared with those of 
natural language networks which are definitely not statistical. Finally the enigma of the famous Zipf-
diagram can be disclosed by observing networks and text paths which run inside of them along 
existing connections from node to node. A staircase curve emerges, which is a better description of 
reality than a smoothed power law. All this can be repeated by experiments, which means that 
eventually we found a transition from descriptive to constructive science. Therefore the new ideas 
could be applied immediately also in technology. 

Certainly the basic biological language structure arose a long time ago. Later on the typical 
patterns of the network connections for different language families should have evolved separately 
and were almost certainly accompanied by optimization processes for maximum entropy. Nowadays 
the details of the connection patterns for any language have to be learned anew by every child, and in 
this process, unusual alterations are not allowed by its language community.  

Keywords: text processing, language network, hierarchical network system, word classes, 
multistage maximum entropy, Zipf´s law, association matrix, matrix dots for 
connections, functional network structure  

 
1. Language and randomness –  an antagonism 
 
Natural language is such an overwhelmingly extensive, precise, orderly, complicated, and 
nevertheless flexible world, that one could imagine only a great number of geniuses have 
created such a wonderful system. The opposite, however, could be called "chaos". It is 
apparently not controlled by the ideas of geniuses but by arbitrariness and randomness. The 
order of language and the disorder of chaos are, at first glance, incompatible. For example it is 
certain by all means that when we speak or write some sentences we do not choose the words 
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depending on probabilities. We know immediately and exactly whether the word sequence is 
correct or incorrect. And yet, when languages were created, randomness and its rules must 
have played an important part (as will be shown in this paper as well). Suspicions about this 
already existed for a long time: It is revealing that the mathematician Benoit Mandelbrot, later 
on the inventor of the theory of chaos, struggled hard to understand language and its enigmas 
(Mandelbrot 1953), unfortunately with limited success. The bitter dicussions which continued 
for many years between Mandelbrot and another mathematician, J.A. Simon, are not forgotten 
in the scientific community. Simon doubted the validity of Mandelbrot�s theories (Mandelbrot 
1953, 1959, 1961a,b; Simon 1955, 1960, 1961a,b, 1963; Rapoport 1982; Li 1992). 
 
 
2. What can be said about language? 
 
Let us risk a second look and consider popular agreements which widely exist about language. 
Who, for example, would oppose the following, almost trivial statement: "The creation of 
natural languages is the greatest achievement of man". In this respect one can refer to the early 
philosophers, who stated that thinking is only possible through language (this was the first 
definition of thinking). Of course no philosopher could be understood without language. 
Wittgenstein (1989, 2001), a modern philosopher, sums up the situation with the statement: 
"philosophy is only language criticism". 

Natural language text is a coherent sequence of elements that are called words. Especially 
printed text, which is the object here, is restricted to a general meaning of words and does not 
contain further information which could also be included in handwritten or spoken words. 
Words can only be arranged in a text in a special manner. For example, if we would cut out 
the words of a text in a book, and then whirl them around like in a lottery, and if we would 
connect them again in a random sequence, a completely senseless text would result. Let us 
note here that the vocabulary and the frequency of words would remain unchanged. Language 
has to obey necessary rules, which are referred to as "grammar". These rules are very strict, as 
we can experience when we learn a foreign language. It often depends on the position of a 
single word. For example, if we cut out a word of a text at an arbitrary position and replace it 
randomly by another word, everybody will immediately perceive this change. We are often 
already startled by the mere interchange of the sequence of two immediately following words.  

What is behind this? Basically, we could say that it is the brain that produces language or 
text, respectively. Therefore, the brain has to be in command of the grammar of language. 
Within a given text, the effect of this grammar can be recognized, i.e. the properties of the 
brain-product "text" are apparently not purely accidental. In certain respects, words in the text-
sequence are even predictable, which helps when we have to understand other people. Very 
strong linguistic agreements exist within a language community, e.g. in the German language.  

The unique properties of this system, called "language", can be conceived by looking at 
the modern processing of text by computers, for example, at the task of translating text 
precisely from a first language into a second. Many decades ago, it was a great surprise for 
researchers that this task was so very extensive and complex. The system "language" consists 
not only of many hundred thousands of different words (vocabulary) but also of a never-
ending number of grammatical rules: Any exception from well-known rules has to be inter-
preted as a special rule � and everybody knows the large number of exceptions. Considering 
these facts it is understandable that in Artificial Intelligence (AI), in spite of unbelievably 
efficient computer technology, researchers failed up to this day to construct a language 
computer which is as effective as an intelligent human adult � even when restrictions were 
made to the size of vocabulary and the number of grammar rules. 
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Besides this modern attempt of utilizing computers by AI-scientists (key word: computer 
linguistics), mainly inspired by the ideas of Noam Chomsky, who looked with fascination at 
the endless problems of grammar, there also exists another attempt, which is called "con-
nectionism". Here, to begin with, one has to forget that grammar exists. Personal experience 
shows that this is not very easy. Instead of grammar one has to observe the structure of a 
biological system, which is able to produce language. Everybody knows the data: In our brain 
we have a huge network consisting of about 1011 neurons and a much larger number of nerve 
fibre connections, called axons and dendrites (about 104 per neuron i.e. on the whole about 
1015 connections). But what is the structure of this network? Surgical incisions in the brain 
have shown that there are unbelievably dense interconnections, a three dimensional texture, 
throughout this huge complex microbiological network, so that we surely will never have the 
possibility of directly observing and extracting the system structure.  

 
 

3.  The indirect approach for determining functional brain structure 
 
The connectionistic approach starts out with looking at the single biological neuron and its 
computer simulation. Many of such so-called artificial neurons can be connected to realize 
technical systems. Being unaware of any natural model of the connection patterns, suitable 
network structures were simply invented, founded on technical and mathematical criteria. 
These artificial neural networks had indeed a certain efficiency in practice when utilized for 
classification problems (system examples are: Perceptron, Learning Matrix, Hopfield Net-
work, etc.). Problems of higher complexity, however, e.g. understanding or generating text, 
could not be solved. In order to proceed, we should make a new approach. It is not enough to 
learn from nature the essential features of a single neuron, we should also learn what type of 
functional network can be found in nature for the connection of neurons � networks which are 
in fact capable of solving real complex problems. This will produce surprising results.  

Recent investigations have shown (Hilberg 1997a, 1999, 2000a,b, 2002) that we can 
reveal in an indirect way parts of the functional network structure of the language brain. The 
idea was that it should be possible to draw conclusions from system output signals, i.e. text, to 
the inner system structure, which is the generator, called "brain". That is especially possible 
when the generating system consists of a large number of similar nodes (neurons) and a much 
larger number of similar connections (nerve fibres).  

The working hypothesis: We enter this complex brain system not at the low level of 
neurons with its weights and thresholds and multiple inputs and outputs but at an easily 
accessible higher level of abstraction, which is the level of words of natural language (basis 
level). Each of these words may be stored in a group of some neurons whose detailed 
properties are neglected (this neglection represents in a literal sense the "abstraction"). Finally 
the nodes remain as abstracted results having only a place, connections and perhaps a code-
name. (In the other direction, to low levels, where the preprocessing of words takes place we 
should have to consider however the detailed properties of neurons which is the requirement 
for usual artificial neural networks. But that is not the object here). Words in text are 
understood as elements, which have existence and meaning irrespective of any particular 
spelling or pronunciation, that is, words should be considered as the elements in printed text. 
Each of these words are stored locally in the brain, an assumption which is suggested by brain 
physiology. (The rival concept of holographic storage is physically different but functionally 
equivalent). It can be supposed that in every node at least one neuron per word is needed, 
whose numerous axons and dendrites may control signals both to nodes in higher level 
networks (Hilberg 1997a, 2000a) and to motor units at lower levels, which are necessary for 
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speaking and writing. Specific sensor units for reading and hearing should be present in lower 
levels as well. That is, many connections should exist both between neurons in a network and 
between neurons of different networks. In respect of existing biological association processes: 
Following the natural model it would be necessary to introduce some thousand additional 
connections per node for "wiring" the necessary association processes. For the realization of 
mathematical simulations however it is more convenient not to simulate a vast number of 
connections but to assume a locally stored technical code in each network node and to use the 
well known principles of technical associative memories. 

After the discussion of the premises above, the following steps in the research will be 
logical. At first the investigation was restricted to the immediate neighbourhood (juxtaposi-
tion) of words in text. Later on a more distant neighbourhood was considered by sys-
tematically proceeding into higher levels of abstraction above the level of words (Hilberg 
1997a, 2000a). However that was a greater venture and cannot be the object of this paper. 
Therefore in the next chapters, dealing here with the basic word level only, we are not allowed 
to pay attention to a context farther than the immediately following next word. Words are 
interpreted as contents of nodes of the functional network in the layer of the basis level (not to 
be confounded with a physiological layer). Fig. 1 shows in principle how text is generated in 
the functional network by activating sequentially one node after the other in a so-called "text 
path" (note: any node can be in two states, i.e. active or passive, something that can be 
accomplished by a single neuron as was mentioned before). The sequence of these words can 
be delivered by converters to an output as a running text. Conversely when hearing or viewing 
text from outside, signals from preprocessing circuits enter the basis level and activate the 
sequence of word nodes in a text path. 

 

 
Fig. 1. Principle of a network with nodes representing stored words and connections 

between the nodes, so that a path from node to node corresponds with a natural language text 
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4.  The measurements 
 
The local storage of words in nodes and their embedding in a functional network by means of 
directional connections between them is an attractive hypothesis. The model is very simple 
and yet all possibilities of natural language concerning immediate neighbourhood are covered, 
provided that a large vocabulary and a sufficiently large volume of learning text was used 
(again one should take into consideration that the neglected far-reaching context influence has 
to be considered elsewhere by additional networks and methods, as could be shown in Hilberg 
2000a, 2002 and Ries 2001). The structure of the basis functional network can be found 
immediately by simple experiments. One has only to observe the direct succession of words in 
large text collections: It is obvious that in text usually each word (form) is repeated several 
times and is located at various places. But in a network there exists only one node for each 
such word. If in text for every word all the different direct successors and predecessors are 
determined � we used large text collections of linguistics, so-called corpora with millions of 
running words � then at the same time the connections of the corresponding nodes in the 
network to any possible successor nodes and predecessor nodes are known. Thus the complete 
structure of the network at the basis level is immediately derived. Large numbers of nodes and 
much larger numbers of connections result. For large text collections typical amounts of 
vocabulary are several hundred thousand different words (to be precise: word forms). For 
estimations there is an interesting result: It could be found that measurements with N different 
words in a given text had about 5N different direct word successions, which are equal to the 
same number of possible word pairs (Meyer 1989). In an experiment, using LIMAS-Corpus, 
one of the most familiar German text collections, about N = 120 000 different words can be 
found, which gives the same number of nodes in the basis network of the model. It is not 
possible to represent this large network in the form of well-known mathematical graphs. 
Another representation is necessary.  

A suitable method will be explained first by a small example. In Fig. 2a one of many 
possible examples for a graph is shown. It is the Siedenburg-graph (Siedenburg 1992) with its 
nodes and connections (We like this demonstration object with no direct reference to language 
problems, because it is a simple mathematical model. Nevertheless it has more favourable 
properties than the well-known hypercube. The graph was invented in our research group as a 
model for superior computer networks several years ago.). Below this graph one can find in 
Fig. 2b a more abstract representation, which is called "connection matrix". Here nodes were 
given numbers and these are placed along both axes. If there is a connection between two 
nodes, then only a dot is entered in the matrix. The number of intersecting connections in a 
network is thus reduced to a corresponding number of simple dots in the matrix, which gives a 
clear result, especially for very large networks. It should be noted that the complete number of 
dots in the matrix describes exactly the complete network structure.  

In the case of text measurements, following the principle of Fig. 2, a structure is obtained 
as is shown in Fig. 3a,b. Here the words were listed in the order of their frequency of occur-
rence, where the position in the list is called "rank r" and plotted at the axes. (A more fun-
damental and structural definition of rank in networks is given later on. It has the same numb-
er scale). The peculiarity in Fig. 3b is the logarithmic scale of the axes, deviating from the 
simple linear scales in Figs. 2b and 3a. This scaling and its use in linguistics was introduced 
for the first time by G. K. Zipf for statistical purposes in 1949 (Zipf 1949; Li 2002; Guiter, 
Arapov 1982). Since that time, especially in quantitative and statistical linguistics, this has 
become the usual method of representing the results of measurements. By the logarithmic 
scaling we can read the growing amount of word numbers (or rank numbers) in equally long 
sections on the axes, with a compression given by a constant factor, e.g. by a factor of 2.  



Wolfgang Hilberg 

  

34 

 
                   



Influence of mathematics upon language 

  

35 

   
 

 
 

   
   

   
   

 (s
uc

ce
ed

in
g)

 w
or

ds
, r

an
k 

or
de

re
d 
→

 

Fig. 3. The connection matrix representation of a graph which was derived from given German text. 
(It is not a random distribution of dots.) Fig. 3a shows the matrix, where words are rank ordered 
with linear scaling. Fig. 3b shows the same object in a matrix with logarithmic scaling. Grouping of 
nodes in classes is indicated at the upper side. In such a matrix, a nearly constant dot density can be 
found in good approximation. 
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Comparing Fig. 3a with Fig. 3b it can be clearly seen that at the axes the rank numbers and 
therefore also in the matrix area the corresponding dots are accumulated more and more. (In 
Fig. 6a the logarithmic compression of rank numbers will be illustrated again in another way). 
 
 
5.  The association matrix 
 
The new diagram in Fig. 3b was not yet known to G.K. Zipf because it does not describe 
statistical facts. Instead it shows invariant connections of nodes (here they are still ordered by 
a statistical parameter that will be replaced by a structural parameter later on) and was 
published first in 1988 under the name "Association Matrix" (Hilberg 1988). The matrix 
should be interpreted in the following way: When seizing a first node with its number upon 
the horizontal axis you will find dots on the vertical line above this numbered node. 
Proceeding from these dots horizontally to the left, you will find on the vertical axis the 
numbers of all nodes which are proven possible successors to the first node at the beginning. 
On the contrary, if one is looking for predecessors for an arbitrarily chosen word, one has only 
to go to its number on the vertical axis and then you will find on the horizontal line dots 
which lead downwards to all possible predecessors. Of fundamental importance is the order of 
node numbers which defines their rank. Zipf decided that at the x-axis the order is chosen 
according to the frequency of occurrence of words. Following provisionally this proposal also 
for the matrix in Fig. 3, the most frequent word is placed on the horizontal axis at the farthest 
left end, and going to the right, less frequent words follow, until at the farthest right side those 
words can be found which occur only once. (In Zipf-diagrams, contrary to the association 
matrices above, not rank but absolute frequencies are plotted in the vertical direction).  

Investigating structures of natural language text we were surprised to find an unequivocal 
relation between frequency statistics and deterministic network structure. That is, we found 
that rank is an order which is identical to another order given by the number of connections 
which a node can have with other nodes (which we called "ramification"). This fact is by no 
means self-evident. The remaining difference between rank and ramification is only a reverse 
direction in the axes when counting numbers. That is, the word occurring with the highest fre-
quency (it has lowest rank) is the same as the word in the node with the greatest ramification.  

 
 

6.  Dot distributions and various texts 
 
Now, having obtained experimentally a first reliable image of the functional structure of the 
human brain in the level of words, the question arises how we can understand and interpret the 
language network of Fig. 3b. First of all the nearly constant dot density over the matrix area is 
very striking. It looks as if somebody had dispersed grains of sand over this area. Yet we 
know that each dot does not represent a random succession of two words in text, because a dot 
stands for an existing and proved network connection (we deal here with classical deter-
ministic linguistic conceptions and not � as very often in contemporary science � with prob-
abilistic or statistic conceptions). Moreover the matrix is sparsely occupied because it is 
obvious that there exists a much larger number of theoretical successions of words, which are 
not allowed in language and which never will get a dot.  

If we derive a network from another German text Corpus or from works of various Ger-
man writers, e.g. of Martin Luther, Friedrich Nietzsche, Johann Wolfgang Goethe, Thomas 
Mann, etc., or from various Corpora of newspapers, e.g. of FAZ, Spiegel, Süddeutsche Zei-
tung, etc., then exactly the same distribution of dots results, provided that we used a suffi-
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ciently large vocabulary. Word connections, permitted by the language community (only 
direct word successions) will always be found at the same place. When proceeding from 
Corpus to Corpus, some new word connections are added, but they will become increasingly 
seldom, according to experience. The corresponding additional dots for these connections are 
placed at rows and columns between previous dots. Only when the vocabulary is extended by 
new words, additional rows and columns will arise, which will slightly distort the image of 
dot distribution locally. At last also these perturbations can be avoided by using a modified 
chronological rank.  

 
 

7.  Fixed dots and word classes 
 
A completely different individual distribution of dots results when we use text of another lan-
guage. Any language has a network structure of its own, a fact that can be demonstrated very 
easily. At the same time it is true that for each language, provided we have very large text 
collections, the association matrix is invariant. It is astonishing how different languages are 
equal in their constant dot density and at the same time how they differ in the fine local place-
ment of dots. The conclusion can be made that this is true for all languages which exhibit a re-
gular Zipf-curve. This again is proved practically for all natural languages. In all the languages 
investigated by us, the distribution of dots inside the matrix seems to be statistical or stochas-
tical at first sight, possibly causing the general misunderstanding that this would obviously 
represent a random result � a conclusion that may be drawn by inexperienced observers or by 
routine blinded scientists, perhaps coming from statistical language processing (Manning, 
Schütze 2001).  

A comparison of a large matrix full of dots with the sky full of stars may illustrate the 
proportions furthermore: The position of stars could at first sight appear random and even 
variable to a naive observer, but when longer observation demonstrates to him that stars do 
not alter their mutual positions, he will surely understand the name "fixed stars". In this 
respect one could also speak of "fixed dots" in the matrix.  

Fig. 4. Illustration of a basic model where nodes are divided into word classes. There are classes i = 
0,1,2,�,k, each exhibiting 2i nodes. Each class has nodes of equal ramification. The number of nodes in a class 
multiplied by the number of ramifications equals the constant value 2n. 
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We have learned now that the fundamental structure of functional networks is the same in 
all languages. A more precise understanding of common properties of all language networks 
can be obtained when the matrix area is divided into narrow horizontal and vertical stripes 
(see Fig. 6a). Considering constant dot density and logarithmic scaling, a structural classi-
fication of words or nodes, respectively, is adequate, see Fig. 4. Here, in a first approximation, 
the number of nodes in a class � beginning with one node � increases from class to class by a 
factor of 2. At the same time the numbers of connections per node decrease correspondingly 
by a factor of 1/2. The product of both numbers in a class is a measure for the communication 
performance of the system under consideration. It is the same for all classes (it corresponds 
with the fact that in the matrix the number of dots in all stripes is about the same). 

 
 

8.  Shannon and Zipf 
 
In the field of linguistics the following will be of interest: For the last five decades in the 
preceding century the well-known law of G.K. Zipf (1949) has been in existence. This brings, 
in a mysterious way, a clear mathematical relation into the apparently free world of man-made 
text which is proven to be valid for very differing types of text samples and for very different 
languages. The description of the law is very simple: As was mentioned before, when arrang-
ing frequencies of words in a diagram with logarithmic-scaled axes, one for frequency and one 
for rank, Zipf's law can be recognized as a straight line declining by 45 degrees. A lot of these 
diagrams have been measured by many researchers in the past and also by ourselves (Hilberg 
1999, 2000b; Meyer 1989; Steinmann 1996; Nachtwey 1995; Burschel 1998), because appar-
ently nobody can trust this mysterious law until he himself has examined it. Instead of pre-
senting our own recent results, Fig. 5 shows the most popular example in natural science lite-
rature given by C.E. Shannon, the well-known founder of information theory. Such a clear 
penetration of mathematics into the amazingly flexible world of language, especially in litera- 

 
Fig. 5. Example of a Zipf-curve, which was already published by the mathematician C.E. 
Shannon (1951) 50 years ago. Such a curve with slope -1 can be found in any text of any 
language. 
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ture, appeared unexpected and impossible to all researchers, see Table 1 in Appendix 4. The 
underlying cause could not be understood � even Shannon had no explanation but never-
theless he used the law! However, by means of the results of our matrix measurements above, 
we shall approach the mystery in a first step in the following way: We supplement our matrix 
measurements by including also the frequency of dots, i.e. how often a certain word pair (dot) 
appears in text, and we store this data for all dots, e.g. in a third coordinate. Then these fre-
quency numbers are summed up for each word in its matrix column. As can be seen, this 
method combines structural determinism (the individual connections and the resulting rami-
fication of nodes in a network used as rank order) and conventional statistics (frequency of 
words in text) and yields in the average exactly the famous Zipf-curve. As was also mentioned 
earlier, the Zipf-relation is the base of classic quantitative linguistics, although nobody under-
stood at the bottom what could be the reason for such a power law which is present in any text 
in any natural language; compare for example the thoughtful considerations of the American 
Nobel prize winner in physics, M. Gell-Mann (1994) ("...Zipf's law remains essentially unex-
plained..."). However, this situation is going to be changed. We shall reach an understanding 
of the necessary network structure and of the root of Zipf's law with the aid of the class model 
in Fig. 4 by further steps and evaluations which are to be explained subsequently in detail. 
 
 
9. Formal design of the superior general type for the language network 
 
In the preceding chapters the object was measuring and describing language networks of a 
natural language (with the restriction to direct successions of words). The structure of the net-
work discovered was not known in mathematics up to now, which seems very strange. Fur-
thermore it is another interesting question, whether the technical design of such a network 
with its connections is possible and whether it can be realized at all, so that we may be able, 
for example, to construct a corresponding electronic language machine. Now, if for once we 
could temporarily forget the deterministic character of the network structure in the matrix, and 
if we would interpret the seemingly random distribution of dots as a true mathematical 
distribution by chance, it could bring us very interesting information theoretical insights. That 
is, it will lead us at first to a well known general law of information theory which is valid for 
all random types of such networks, a law however which has to be observed in fact also in 
comparable optimum pseudo-random deterministic networks. Therefore the tentative inter-
pretation as a random distribution of dots in the matrix will indeed receive a subsequent 
justification.  
 
 
10.  Random distribution of dots  
 
Now we need a suitable method for generating a random distribution of dots with constant dot 
density in the matrix area and with logarithmic scales in the axes. That is not very difficult, as 
can be explained in Fig. 6. In the simplest case we have only to presume a class division of 
nodes as in Fig. 4, corresponding to a given large amount of words (vocabulary) with rank 
limit  r max = N = 2n+1�1. At first we assume that these nodes do not have mutual connections, 
we know only their rank numbers. That is, contents and meaning are not defined at the begin-
ning. The following procedure generates a network which is characterized by a random distri-
bution of dots in the matrix and especially by a type of dot distribution of constant density 
which can be observed also for natural language networks.  
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 Fig. 6a reminds us at first what the logarithmic placement of nodes with rank numbers at 
the axes means and how the classification of nodes will divide the matrix area in narrow 
stripes. Then the design begins in Fig. 6c with an arbitrary word node x 0  (at the lower edge of 
the matrix), for which the connection to the next word node y 0 (at the left edge) is to be deter-
mined. This word node y 0  is situated of course in one of the structural word classes. We de-
cide on one of them by chance, that is, we choose in Fig. 6b one out of k+1 available 
horizontal stripes by chance (in mathematical terms all classes have the same probability). 
Classes i, with i = 0,1,2,...,k, contain an amount of word nodes, the number of which increases 
with 2i. Inside a chosen class we choose again one of its words by chance. This is the desired 
word y 0 . 
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Fig. 6: Sketches for the explanation of a construction process in two steps which yields a 

network of randomness. 
 
6a: It is shown how the matrix can be divided into small vertical and horizontal stripes 

with width factor 2. The number of different words at the edge of the stripes is the same as the 
number of word nodes in corresponding word classes (indicated by points at the edges) 

 
6b: Principle of random choices of a class and subsequently of choosing a dot in this 

class, starting with word x and ending with the next word y. 
 
6c: It is shown how an iterative process proceedings occur from nodes x0, x1, x2, � to the 

successor nodes y0, y1, y2, � with y0 = x1, y1 = x2, � In this way the matrix area is filled with 
dots. 

 
In the next step we could link the nodes x 0  and y 0  in a graph by a connecting line (not 

shown here). The following second connection line will be found by repeating the whole 
action in the matrix. That is, now beginning in Fig. 6c with the last point y 0  � which as a new 
starting point obtains the name x1  � we choose again one of the classes by chance and inside 
the chosen class one of the possible word nodes by chance. Then we obtain y1 . Repeating this 
action sufficiently often, e.g. until a sufficiently large part of all word nodes has been called 
up at least once, a random distribution of dots results as is shown in Fig. 7. It represents a 
randomly-generated individual network. When after its generation no alteration takes place, 
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we can call it a firm network that in its general type corresponds with the biological functional 
language network in the brain of an adult human. Statistically seen the artificial network 
cannot be distinguished from a natural language functional network (e.g. it has again 
apparently statistical symmetry of the dots to the rising diagonal and it exhibits maximum 
entropy, which will be explained later on). 

 

 
   Fig. 7: The result of such a stochastic experiment. It describes a network of maximum 

entropy 
 
How fruitful this result of a formal network design is may be recognized by a statistical 

evaluation of the model in two tests: 
Test 1: Observing natural text it can be seen that the frequency of punctuation marks 

inside this text is rather high, especially that of commas and full stops. Summarizing full 
stops, question marks and exclamation marks between sentences in a single symbol 
"separation mark" and neglecting commas for the present, we shall find this general separation 
mark in the first word class, which, as we know, can theoretically have only one element. We 
utilize such a class in the design of a random network. Then the following fact is valid: When 
all classes are activated with equal frequency, the class of general "separation mark" will 
appear from time to time. A sentence is always terminated with its appearance. Having k+1 
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classes, n = 0,1,2,...k, the separation marks appear with probability 1/(k+1). Between the 
marks words are present. A sentence includes therefore k words on the average. The 
encyclopaedias of German language cite that the most frequent lengths of sentences amount to 
15-18 words, with a high value of about 16 words in the newspaper "Frankfurter Allgemeine 
Zeitung" and a low value of about 11 words in the newspaper "Bild". Regarding voluminous 
collections of text, e.g. LIMAS-Corpus with about 120 000 words and 217 = 2k+1, then k = 16 
classes can be counted. Substracting the class for separation marks these numbers correspond 
to an average word length of 15 for a sentence. Considering that we deal only with orders of 
magnitude, the precision of the estimation taken from the association matrix is very 
surprising. Also surprising is the fact that we derived this result without the lengthy statistical 
measurements of long text that was always necessary in the past (Meyer 1989). 

However the model gives no explanation, why above the volume of a usual supply of 
words the average length of sentences continues to grow with the number of different words, 
though for very large vocabularies the growth becomes extremely weak because of the loga-
rithmic scale. Maybe there is a connection between very rare words or segments and long ex-
planations, or there is an influence coming from authors like Thomas Mann or from increas-
ingly complex scientific literature.  

Test 2: If, in the random design process described above, we accumulate the dots in Fig. 
7 in the columns, a steadily declining curve is obtained, which is called "ramification curve", 
because it gives the resulting ramification number for any node. This straight curve has 
similarity with Zipf's curve. However, only when we count the frequency of the activated 
nodes additionally during the generating process and store it in a third coordinate (as we have 
done above for natural text) and when we accumulate the frequencies of the single dots in the 
columns, now as before in dependence of ramification rank in a diagram, eventually a curve is 
obtained which is at the bottom identical to a measured original Zipf-curve, see Fig. 8. 
Following the rules of its design this curve descends precisely like a staircase. Simulations 
showed that it is somewhat smoothed by Gaussean-like distribution effects (Steinmann 1996). 
The mean slope of this curve has necessarily the value of -1 , that is a descending slope of 45 
degrees. The logical reason for this is obvious: All classes are chosen with equal frequency, 
whereby the number of nodes in any class i rises with 2 i . Therefore the probability for an ar-
bitrary single node in a certain class i is only 1/2 i . (Second order effects and further improve-
ments of the model were carefully calculated by F.-M. Steinmann (1996)).  

As is well known, the conventional approximation of the measured staircase curve is 
usually shown in a first approximation as a straight line with slope -1 or in a second 
approximation (Guiter, Arapov 1982; Rapoport 1982) as a curved smoothed line (curve 
fitting). However the model curve with correct stairs is far more precise. Strictly speaking, 
Zipf's curve is not a pure power law but a staircase law in reality. A model that produces this 
behavior should be superior.  

 
 

11.  The unexpected mathematical core is maximum entropy 
 
Probably the statement is correct that any natural language has a firm and individual network 
of its own. By means of random design processes we can also generate many networks of the 
same type and, if we like, we can begin to create new language systems. It may be possible, 
though not very probable, when we repeat the design process very often, to find eventually 
structures of known natural language networks. More realistic seems to be the question 
whether natural networks were also once created in this random manner. Thus, who created 
languages and was he perhaps really playing dice? Or, to ask within the scope of natural 
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science: Why are laws of randomness or laws of pseudo-randomness built into these net-
works? At first we understand that the elementary structure of classes in Fig. 4 has a simple 
physiological basis which can frequently be found in nature. This basis consists of cell  
division processes where the number of new cells multiplies always by a factor of 2 . Now the 
only problem that is left to us is eventually to clear up the crucial process of realizing 
connections between network nodes.  

 

 
Fig. 8. A Zipf-diagram which can be derived from the stochastic experiment described (see 
Figs. 6 and 7). The more nodes are used, the better is the slope approximated by the value -1. 
 

In recent years scientists have learned that the connections between brain cells or neurons 
(with their axons, dendrites, synapses, etc.) develop over a period of only a few years in little 
children. The connection patterns depend on the language community in which the child 
grows up, or in other words, the contemporary language defines the structure of connections, 
see for example recent affirmative research results (Dehaine-Lambertz 2002). A pseudo-
random law is built into language, as was shown. If language is an invention of man, how 
could a random law arise? We should learn about this from the development of artificial 
probability networks above. Here we made use of the simplest principle of all, the principle of 
randomness, in order to find the connections between nodes. Thus no human geniuses were 
necessary. In spite of this, however, even geniuses could not have acted more cleverly than to 
choose the principle of randomness. This can be understood when the entropy of text is 
calculated (entropy is the average information content of symbols; words are here regarded as 
symbols). With this operation the frequency of words in natural text is conventionally counted 
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and introduced into the well-known formula of entropy, originated by C.E. Shannon. Equally 
satisfactory is the calculation of entropy by utilizing all text paths in the language network, 
which were laid down when the network was created. Both values of entropy coincide 
remarkably well, though one of these calculations � the conventional one � is based on a lot of 
measurements of word frequencies in given text, and the other calculation � the connection-
istic one � requires only the number N of involved nodes in the network (Steinmann 1996). 
The most important discovery is, however, that by constructing a network by chance (follow-
ing the principle of Fig. 6, which leads in the end to a nearly constant dot density) eventually 
the maximum of all possible entropy values is exactly obtained (Hilberg 2000b). (As is well 
known in information theory, the maximum of entropy results, when words � being here the 
information symbols of the signal source � can be predicted in any output action only with 
maximum uncertainty. That is exactly the case when throwing dice. In most applications the 
dice is thrown only once for each output action, corresponding to a one stage signal source. 
Here however in a two stage process for every decision the dice is even thrown twice. Not 
directly worse than doing it only once. It is rather a generalisation for multistage sources 
(Hilberg 2000b).) This means in fact that networks with the structure described above are able 
to deliver word sequences of maximum information content on the average. Conscious human 
creators of a natural language could not do better.  

Finally this has shown the superiority of the pseudo-random structure of networks over all 
other possible structures. In the view of mathematics, maximum entropy is the unexpected 
deep lying core of natural languages. Its implication is the mathematically defined network 
structure. One could imagine that in the evolution of languages the pseudo-random structure 
was not present from the onset but that it was slowly improving thanks to the endeavour of 
many humans. This may have led gradually to an optimum of efficiency. The combination of 
the simplest instruction rules for generating language and the achievement of optimum 
information properties may be the explanation for the striking success of "homo sapiens" 
compared with other less talented competitors.  

 
 

12.   Further investigations 
 
We observed above a language-network only in the abstraction level of words. But, of course, 
human memory can store far more information than only a lot of single words and the 
possibilities of their direct succession. In order to understand language we still necessarily 
need the so-called "context", which is included in sentences and the succession of many 
coherent sentences. If we interpret the immediately observable language-network of words 
merely as the surface structure of a complete system (on this surface only the words can be 
grasped directly, i.e., they can be heard, spoken, written, read, etc., something which is no 
longer valid for thoughts), then a deep hidden structure is still missing. This cannot be 
determined by the kind of measurements described above, it can probably only be invented by 
clever ideas. One possibility is seen, following the principle of increasing abstraction in steps 
(Hilberg 1997a, 2002a), in creating a model containing several language networks of the 
optimum type discussed above (Hilberg 1997a, 2000a). This is indeed a new approach, 
because in the scientific mainstream dealing with conventional artificial neural networks the 
existence of a hidden deep structure is extremely dubious, as can be cited from Thompson 
(1994): "perhaps in brain, deep language structure will not exist." 

In order to build an intelligent language machine exclusively out of functional networks, a 
structural machine was designed which is strictly contrary to the von-Neumann-computer 
model with its combination of large different modules. It consists of a hierarchical arrange-
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ment of network layers of increasing abstraction. (The method of systematic consideration of 
extended context in text segments of increasing lengths can only be sketched, for details see, 
for example, Hilberg 1997a, 2000a, 2002.) The basic idea again is very simple. If we intend to 
proceed along a certain text path in a given language-network, which will generate the output 
of a corresponding text as a series of words, see Fig. 1, the necessity arises that the transition 
from one node to the desired next node must be chosen using a suitable control signal. Such 
control signals, called meta-words, will come from a so-called meta-language-network where 
the signals are stored in compressed form. (In order to avoid an exploding system the 
requirement was laid down by us that the number of meta nodes must not be larger than the 
number of words in the basis word level (Hilberg 1997). This can be met without any 
restrictions by an efficient abstraction process during the time when text is received and in the 
reverse direction by a logical prediction process, when text is generated. For comparison, in 
the field of statistics, prediction would be performed by well-known Markov processes but 
here the procedure works without probabilities.) The paths in this meta-language-network will 
be chosen again by control signals of the next network, the meta-meta-network. In this way 
the process will be continued over several hierarchical abstraction levels until we arrive at the 
last level with its relatively short meta-word for the whole original path. By means of this high 
level meta-word we are able to recall the whole long text again and bring it to the output, 
where we can read and hear it in the familiar word forms. (An example for such a text, 
generated from a higher situated single meta-word can be given here as a small section in 
German (Ries 2001): "...unterm breiten Dache sprudelt ein prächtiger Brunnen, spielte den 
blanken Fenstern stehn einige Blumenstöcke...". There is still a small error in this text because 
the necessary deterministic prediction procedure used here was apparently chosen too weak.) 
Logically, the last meta-word is the redundancy-free representation of the supplied text. We 
like to speak of the "thought" of this text.  

The Darmstadt research project runs under the label "language machine". We understand 
this text-machine in some respects as a counterpart to the computer, for it should handle 
words better than numbers. Moreover it should take up � very fast and with little technical 
effort � reasonable text of given length, which has to be stored and, if desired, again to be 
handed out exactly word for word or in modified form. Future applications may be seen in the 
field of ambitious translation of text from one language into another language. Present 
preliminary experiments have shown that a simulated system was already able to deliver text, 
which had first been received, in various modifications without using any grammar rule (Ries 
2001). In future the spectrum should be enlarged so that a choice can be made from a 
relatively unsharp report, as one would expect from an untrained person, to an exact word for 
word repetition as it is given e.g. by a digital memory.  

We think that a lot of work is still necessary until we will achieve a mature state. A first 
survey of the principles of such an intelligent language system can be found in Hilberg 2000a, 
special aspects in the papers Hilberg 1997a,b, 1988, 1990, 1999, 2000b. Work has proceeded 
so far that several levels of abstraction were realized and that execution and cooperation of 
particular connectionistic operations for text generation and text processing could be verified 
in simulations, such as abstraction, compression, prediction, segmenting, etc., see the doctoral 
theses Meyer (1989), Steinmann (1996), Nachtwey (1995), Burschel (1998), Ries (2001). 
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Appendix 1 
 
The question why the results of randomly generated text are equal to the results of natural text 
is not yet answered rigorously. We may approach this answer again in some steps. The 
remarks made to Test 2 above considering the origin of Zipf-like curves in artificial language 
networks can be applied also to a measured natural network. As a first step one can imagine 
that a text path is chosen by chance in a given natural network, just as we did above, when we 
played dice without boundary conditions. It is as if we are now walking aimlessly and ran-
domly in a "maze" on given rails (where for example the German text arises of the following 
kind: " ...so solches nicht mit Fluchen und gleich auf ihn der nach Arbeit sie mahnte..."). 

If once again we store in every matrix dot the frequency with which we went through 
each corresponding connection, the addition of all frequency numbers in each matrix column 
will lead to the frequency of this word, which was encountered in text, independent of the fact 
which special ramification after this node then took place. This frequency is the same as that 
of words in a Zipf-diagram. Therefore we again have a Zipf-curve and it has necessarily a 
mean slope with value -1 . 

Last but not least we have to investigate the true classical Zipf-curve (be cautious: the 
conventional interpolation with formulae of increasing precision which can be found in 
literature has nothing to do with logical derivation, it is only curve-fitting). The difference be-
tween generating reasonable text and the playing dice considerations above is that in the brain 
we do not walk by random decisions in a natural network. The text path is rather chosen by 
regarding context information which is present in coherent text. This is the usual situation 
when measuring original Zipf curves. In this case we have to run through the functional 
network with a reasonable text and in so doing, we shall meet the same nodes as encountered 
with random choices but in another order of succession. The same frequency values will 
result. (Remember also the lottery game in the beginning). Again: the main difference be-
tween a coherent text and random text is the fact that in the first case relations exist between 
words, also at a remote distance. These relations, however, are not considered in a Zipf 
analysis, where only the frequency of occurrence of words is counted. Thus without further 
knowledge, the movement along a reasonable text path cannot be distinguished from walking 
by chance through the network along existing network connections. Far reaching relations 
which are necessary for a reasonable text can be considered only when appropriate structures 
in additional networks above a basis network are introduced. The adjacent network levels are 
called "meta levels" and they are organized in a hierarchical manner. 
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Appendix 2 
 
The linguistic problem in test 2, where we were interested in discovering the relation between 
network structure and Zipf's law, let us enter the field of statistics. As is well known, statistics 
has to do with counting events, and the measuring of the frequency of numbers is a typical 
statistical operation. In contrast: The association matrix with its pseudo-random distribution of 
dots (without additional frequency values) has the meaning of being a firm network structure 
and therefore it is not an object of statistics! It is rather the basis for future connectionistic 
artificial language systems.  
 
 
Appendix 3 
 
A supplement seems to be necessary in order to separate notions used here from notions used 
elsewhere. The considerations above have shown that the new technical connectionism prefers 
higher abstraction levels with physical properties, in contrast to the classical concept of low 
level layers of detailed artificial neural networks. The new connectionism is characterized 
even on the basis level by the use of stored codes in the nodes of a model network. The 
structure of this model is derived from measurements � that means it is learned from nature! 
Furthermore, the connections between these nodes can be switched on by a single individual 
learning operation and after that the connection will essentially persist forever. Thus a 
network arises which is deterministic and well known in its local details, in contrast to the 
classical neural network which has to be treated as a black box, in which all weight values at 
the input of all neurons are adapted in a statistical way to meet given requirements. The well-
known specific back-propagation-algorithm shows that the system behavior defines magnitude 
and distribution of all weights. Consequently, in the course of a learning process or when the 
task has been somewhat changed, the previous weights may be considerably and simultane-
ously altered at many places, with values either increasing or decreasing. This is definitely not 
the case with the networks in higher abstraction levels, which were considered here.  
 
 
Appendix 4 
 

Table 1 
Researchers who were engaged in solving the enigma of Zipf´s law 
 
G.K. Zipf, 1949  Linguist 
(Human behavior and the Principle of Least Effort) 
C-E.Shannon, 1951  Mathematician (Information Theory) 
Prediction and Entropy in Printed English 
B. Mandelbrot, 1953 Mathematician (Chaos-Theory) 
An information theory of the statistical structure of language 
A. Rapoport, 1982  Mathematician (Philosopher) 
Zipf´s Law Re-Visited 
W. Li, 1992   Information Scientist 
Random Texts Exhibit Zipf´s-Law-Like Word Frequency Distribution 
M. Gell-Mann, 1994  Physicist (Nobel-Prize) 
The Quark and the Jaguar. Adventures in the Simple and the Complex. 
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Power Law Models in Linguistics: Hungarian 

Reinhard Köhler1 
 

Abstract. First, the status of Zipf(-Menzerath)�s Law and its criticisms are discussed, and the 
application of power law models, particularly in linguistics, is supported from a general point of view. 
In the following sections, empirical studies on dependencies are conducted which test the Zipf-
Mandelbrot Law, other power law models (Menzerath-Altmann�s Law, the length-frequency 
dependency), and the word length distribution on data from Hungarian (a text and a dictionary).  

 
Keywords: Zipf-Mandelbrot Law, Menzerath-Altmann Law, Power Law Models, word length, 

       word frequency, Waring distribution, Conway-Maxwell-Poisson distribution,   
      modified binomial distribution, length-frequency dependency, Hungarian 

 
 
1. A General Remark on Power Law Models and on Certain Criticisms of Zipf�s Law 
 
Following a stochastic regularity in time, considerations can be found in the quantitative-
linguistic literature which are sceptical about the lawfulness of the phenomena observed with 
rank-frequency distributions of words and other linguistic units. Every now and then, authors 
claim that these observations may not be considered as being generated by a meaningful 
linguistic law (the first one was probably Miller (1951, 91; 1957); the most prominent oppon-
ent to Zipf�s work in general was Herdan (e.g., 1966)). The reasons given for their assess-
ments vary to some degree but they all resemble each other in that they are of the type �Since 
a Poisson distribution of spaces in a string of letters produces the same Zipf-like distribution 
of �words� as can be observed in real texts there is no point in assuming a linguistic law in this 
phenomenon�. Others argue that the ubiquity of power law distributions (covering phenomena 
as divers as the rank-size distributions of words in texts, books of a given author in a library, 
salaries in a human population, size distributions of avalanches in sand-piles, of earthquakes 
and high waters, solar flares and pulsar glitches, catastrophes of any type etc.) contradicts 
their interpretation as a linguistically interesting fact in general, whereas in natural sciences a 
view is common according to which the study of power laws opens up new vistas (cf. 
Schroeder (1991) or even the ultimate understanding of the world (cf. Bak 1996). 

We will here discuss the opinion that Zipf�s law is uninteresting because there are 
mechanisms which yield, by simple mechanical procedures, similar (or even identical) results 
as the frequency count of words in texts do. Let us look at another example of mathematical 
modelling in quantitative linguistics, viz. certain distributions (such as the binomial, hyper-
geometric or others), which are often used as models of the distribution of properties of lin-
guistic entities in texts. Modelling is simplification, which means in this case that by setting 
up statistical distributions as models of text properties, only very few properties (only the 
ones which are considered relevant for the purpose of the given investigation) are taken into 
account. The potential mistake of confusing the model with its original (i.e., reality) must be 
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avoided, i.e. the model does by no means represent the assumption that only the properties 
used for it would count. A quantitative examination of, say the probability of words to occur 
in a text block using the binomial distribution must not be interpreted as representing the 
assumption that a text is really generated by random processes such as taking words from an 
urn, and that grammatical, semantic, and pragmatic factors do not play any role in these 
processes. Or, if it turns out that the probability of the verses of some poems under analysis to 
begin with the phoneme /k/ follows the Poisson distribution, nobody would draw from this the 
conclusion that the poems were created by means of random numbers. If a law can be 
formulated in cases like the presented ones, these can be only phenomenological ones (i.e., 
laws which predict the data on the basis of a universal statement but do not reveal the under-
lying mechanisms; cf. Bunge). 

On the other hand, if a mathematical model is a deduced consequence of a theoretically 
derived hypothesis, it can be used (under certain conditions) to formulate a representational 
law (i.e., one which not only predicts the behaviour of the system under consideration but also 
offers insights into its relevant mechanisms). 

A model that is justified by theoretical considerations such as Mandelbrot�s (1953) 
derivation of his famous formula by setting up a hypothesis about language as a self-optimis-
ing system must be tested both theoretically (by checking plausibility and compatibility) and 
empirically by confronting the predictions of the model to data from reality. 

However, the observation that there are other mechanisms which can produce similar data 
is of little concern here. Moreover, also a mathematical proof that a formula which represents 
a linguistic hypothesis can be regarded as the result of another (even a trivial) approach does 
not disprove the original hypothesis. 

In most cases, however, where linguists or mathematicians publish their scepticism about 
the validity of Zipf�s Law the main argument is that the rank-frequency distribution with its 
�typical� shape be the �artificial� result of re-arranging the data according to their frequency. 
This criticism may be justified with respect to some recent publications in physics, where 
sometimes power law curves are considered as identical even if one of them is approximately 
a straight line in log-log coordinates whereas the other one appears as near to linear in linear-
log coordinates (cf. e.g. Bak 1996). As opposed to that sloppy kind of analysis, in linguistics, 
the phenomenon has been scrutinised over and over again with the result that the rank-
frequency distributions (and spectra) subsumed under Zipf�s Law show a very characteristic 
behaviour, which go beyond the simple fact that they are monotonously decreasing curves. 
There are, of course, infinitely many forms of curves that could yield from ranking data 
according to their frequency, but word frequency in texts follows the Zipf-Mandelbrot type of 
curve with surprising constancy and uniformity. 

A closer look at the rank-frequency curves found with linguistic units reveals a specific 
property, which was detected and described by V. Kromer (1997): a typical indentation in the 
first part from top. Kromer was even able to find an explanation for this phenomenon, which 
can be considered as characteristic only of linguistic data. Thus, Zipf�s Law in the narrower 
sense is not only no triviality but also a very specific case among the varying forms of power 
law phenomena and deserves special attention and specific modelling. 

 
 

2. Zipf-Mandelbrot�s Law in a Hungarian Text 
 
The present study is in the first line based on dictionary data. However, a contribution to a 
Festschrift dedicated to Zipf should, if possible, contain a rank-frequency analysis of words in 
a text. Therefore, this empirical investigation starts with a Hungarian text (the short version of 
a diploma thesis in computer science with 2310 types and 5266 tokens). As can be seen from 



Power law models in linguistics: Hungarian 53 

the following results2, the rank-frequency distribution confirms to Zipf-Mandelbrot�s Law and 
the spectrum to the Waring distribution, even if the diagrams show that the text is not a 
perfect example of the expected word frequency structure. 
 
Distribution: Zipf-Mandelbrot (a,b; n = x-max) 
Sample size: 5266 
Parameters: 
a = 0,831644926052134    b = 0,554612181736859    n = 2310 
DF =1688 
X² =798,4252     P(X²) =  0,0000     C =  0,1516 
 

 
Figure 1: Fitting the Zipf-Mandelbrot distribution to the rank-frequency data 

 

 
Figure 2: Fitting the Waring distribution to the spectral data 

 
Distribution: Waring (b,n) 
Sample size: 2310 
Parameters: 
b = 1,56185562623533    n = 0,626068264973653 
DF =29 
X² = 33,2356     P(X²) =  0,2683     C =  0,0144 

                                                 
2 To fit theoretical distributions to empirical data, the Altmann Fitter (2.1) was used. 
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3. The Menzerath-Altmann Law and Word Length in Hungarian 
 
Another kind of power law model frequently investigated in linguistics is the Menzerath-
Altmann Law (MAL), which is represented by the formula 

 
y = AxBeCx             (1) 

 
(cf. Altmann 1980, Altmann, Schwibbe 1989), where y is the length of a constituent (e.g., 
mean syllable length), x the length of the corresponding unit measured in number of their 
constituents (e.g., word length measured in number of syllables). Formula (1) is a mono-
tonously decreasing function, hence parameter B is a negative number. 

This model has been tested on data of many languages, many text types and on each level 
of linguistic analysis � from sound length to sentence length, and even on a supra-sentence 
level (cf. Hřebíček 1995), and was confirmed in every case (cf., however, Rukk 2003, where 
Russian sentence length has been studied with a different result). 

The present study contributes to testing this law on data from Hungarian, a language that 
has not yet been investigated in this way. Hungarian and other agglutinative languages are 
particularly interesting with respect to a hypothesis set up by Skalička (1966), who claimed 
that agglutinative languages must have longer words than other language types and syllables 
with a comparably low phonological complexity. This hypothesis seems plausible but has 
never been tested empirically up to now. In terms of the MAL, agglutinative languages should 
show flatter curves on the word-syllable level3. As this language type has not yet been 
investigated with respect to the MAL, a first study has been conducted here on the material of 
an electronic dictionary of Hungarian. 

Hungarian orthography is rather phonological. Therefore, the graphematic representation 
of the words could be used with only little pre-processing (cf. below). Length of vowels and 
consonants has phonematic status in Hungarian, however, whereas vowels are marked by 
diacritics (such as �e� vs. �é�, or �ü� vs. �ű�), length of consonants is marked by gemination 
(�t� vs. �tt�). As opposed to this point of view, some linguists think that Hungarian geminates 
should be interpreted biphonematical. For the present study, both alternatives have been taken 
into account � with apparently minimal difference in the results4 (see below). Counting could 
be done automatically but some pre-processing was necessary to disambiguate cases as the 
following ones: 
 

1. Letter combinations such as sz, cs, zs etc., which represent single phonemes (/s/, /t∫/, 
and /�/ resp.,) have to be disambiguated from identically looking sequences, which 
can occur at word boundaries within compounds. 

2. Letter combinations which represent long versions of the above-mentioned con-
sonants, such as in the compound noun �sasszem� (eagle�s eye), where there is a 
word boundary between the letters s and sz, vs. �össze� (together), where there is 
none, or �mennyi� (how much) without a word boundary between n and ny vs. 
�ellennyugta� (counter-confirmation). 

 
As can be seen from tables 1 and 2 and figures 3 and 4, function (1) could be fitted to the 

data with very good results.  
 
 
 

                                                 
3 I owe this idea to Sabine Weber (personal communication). 
4 In fact, the differences are so small that a significance test can be considered as unnecessary. 
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Table 1 
Syllable length as a function of word length in syllables. 

Here, geminate consonants were counted as two phonemes. The single occurrence  
of a nine syllable word was excluded from the fitting because of its statistical unreliability. 

 
Word length 

[no. of 
syllables] 

Mean syllable 
length 

Expected 
syllable length 

No. of words 
with length x 

1 3.279450 3.27065 1664 
2 2.726930 2.75150 12733 
3 2.530530 2.52829 20844 
4 2.416290 2.40864 15620 
5 2.350710 2.34053 5547 
6 2.308170 2.30300 1510 
7 2.288680 2.28573 289 
8 2.270830 2.28299 60 
9 2.222220 2.29129 1 

A = 3.1432,   B = -0.3067,   C = 0.0398 
Proportion of variance explained (R2) = 0.9987 
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Figure 3: Graph representing the fit shown in Table 1 
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Figure 4: Graph representing the fit shown in Table 2 
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Table 2 
Syllable length as a function of word length in syllables.  

Here, geminate consonants were counted as long phonemes. The single occurrence of a nine  
syllable word was excluded from the fitting because of its statistical unreliability. 

 
Word 

length x [no. 
of syllables] 

Mean syllable 
length 

Expected 
syllable length 

No. of words with 
length x 

1 3.167670 3.16069 1664 
2 2.673640 2.69201 12733 
3 2.487080 2.48577 20844 
4 2.376170 2.37254 15620 
5 2.312960 2.30588 5547 
6 2.270310 2.26694 1510 
7 2.258530 2.24636 289 
8 2.222920 2.23890 60 
9 2.111110 2.24135 1 

A = 3.0545,   B = -0.2808, C = 0.0342 
Proportion of variance explained (R2) = 0.9988 

 
The results obtained here once more confirm the MAL on material from a language not yet 
evaluated so far.     
 
 
4. The Menzerath-Altmann Law and Syllable Length in Hungarian 
 
The Hungarian dictionary data allow for another MAL analysis, viz. on the syllable-sound 
level, however indirectly. As sound length was not available in terms of duration, the 
following approximation was used: Short vowels and consonants were counted as one length 
unit each, long sounds as two length units. Thus, only these two values could be obtained as 
length measure of a sound, and consequently mean sound length is a real number in the 
interval [1,2]. Table 3 shows the empirical findings and the result of the fit of formula (1) to 
the data. 
 

Table 3 
Sound length as a function of syllable length in no. of sounds.  

The single occurrence of a nine sound syllable was excluded from the fitting  
because of its statistical unreliability. 

 
Syllable length x 
[no. of phonemes] 

Mean sound 
length 

Expected 
sound length 

No. of words with 
x syllables  

1 1.178000 1.17455 1664 
2 1.142000 1.15219 12732 
3 1.144000 1.14109 20845 
4 1.139000 1.13452 15621 
5 1.134000 1.13042 5547 
6 1.124000 1.12785 1510 
7 1.124000 1.12634 289 
8 1.126000 1.12561 60 
9 1.050000 1.12546 1 

A = 1.1701,   B = -0.0333,    C = 0.0038 
Proportion of variance explained (R2) = 0.9195 
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Figure 4: Graph representing the fit shown in Table 3 

 
Dictionary entries without vowels (such as �b� � e.g., for the name of the letter b � or the 
horse command �brr�) were not taken into account. 

The results presented in sections 3 and 4 are clearly another confirmation of the MAL. 
However, we cannot yet draw any conclusions with respect to Skalička�s hypothesis for the 
following reasons: (1) Sound length measurement in this study was only a rough approxi-
mation, (2) the results obtained here are based on a dictionary study whereas most of the 
available results of MAL studies were done on text data. Hence, a direct comparison is not 
possible, a test of significance is not applicable. 
 
 
5. Word Length Distributions 
 
According to Skalička�s hypothesis, agglutinative languages should have longer words than 
other languages. A possible test in this context is to compare the word length distributions of 
agglutinative to other languages, another one is to compare the differences between dictionary 
based length distributions and text based ones. Here, both types of length distributions have 
been studied.5  

Word length in the dictionary is compatible with two models: the Conway-Maxwell-Pois-
son and the Hyperbinomial distributions.6 Table 4 and Figure 5 show the fit of the Conway-
Maxwell-Poisson distribution to the dictionary data. 

The empirical distribution in the diploma thesis is shown in Table 5. Words with zero-
length are, e.g. �s� � the short version of �és� (and) � and abbreviations such as �stb� (etc.). 
Within the framework of the Göttingen project (cf. Best 2001), abbreviations are expanded. In 
the present study, they were counted as they are. 
 

 
 
 
 

                                                 
5 In general, word length distributions are studied on text material only (cf. Best 1997; Best 2001). 
6 For detailed information on discrete probability distributions see Wimmer, Altmann 1999. 
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Table 4 
Fitting the Conway-Maxwell-Poisson distribution to the dictionary data 

 
X[i] F[i] NP[i] 

1 1664 1734,0768 
2 12733 12500,8360 
3 20844 21079,7406 
4 15620 15195,4157 
5 5547 5993,6900 
6 1510 1481,0073 
7 289 249,7238 
8 60 30,4821 
9 1 3,0275 

a = 7,2089,   b = 2,09595,   DF = 6, X² = 91,6206     P(X²) =  0,0000     C =  0,0016 
Sample size: 58268 

 

 
Figure 5: Graph of the fit shown in Table 4. 

 
In analogy to the decision in Bartens, Zöbelin (1997, 196), the zero-syllabic words were 

added to the monosyllabic ones for fitting a model to the data. As the monosyllabic words 
show a specific behaviour, a modified distribution must be used  (cf. Wimmer, Witkovský, 
Altmann 1999). In the present case, the Modified Binomial distribution could be fitted with 
good results (cf. Table 6 and Figure 6).  
  

Table 5 
The empirical word length distribution in the diploma thesis 

 
Word length x 

[no. of syllables] 
No. of words 
with length x 

0 27 
1 1544 
2 979 
3 1049 
4 829 
5 433 
6 134 
7 33 
8 7 
9 3 
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Table 6 
 Fitting the Modified Binomial distribution to the text data 

 
X[i] F[i] NP[i] 

1 1571 1568,9028 
2 979 974,5889 
3 1049 1099,0040 
4 829 784,8911 
5 433 398,2902 
6 134 152,7061 
7 33 45,9201 
8 7 11,0962 
9 3 2,6007 

n = 21,  p = 0,1013,  a = 0,7703, DF = 5,   X² = 15,30   P(X²) = 
0,0091,   C =  0,0030,   Sample size: 5038 

 

 
Figure 6: Graph of the fit shown in Table 6. 

 
 
 
6. Word Length and Word Frequency 
 
Yet another power law dependency Zipf was interested in is the function between word 
frequency and word length. Therefore, a short study on this dependency was conducted on the 
data of the text under analysis. 

Here, a more general form of the power law is considered, viz. formula (2): 
 
(2) y = AxB         
 
where y represents mean word length, x is the frequency, and A and B are parameters. Figure 
7 shows the fit of formula (2) to the data from the text. The parameters obtained are 

A = 4.02732366 
B = -0.332778471 

and  R2 = 0.7580. 
Whether the length variable shows an oscillation (cf. Köhler 1986, 137ff) in the fre-

quency dimension must be checked on more Hungarian texts. 
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7. Conclusion 
 
In the present study, first results of MAL studies on Hungarian data were obtained. This kind 
of results can be used, as well as the word length studies, to investigate particularities of ag-
glutinative languages, especially to test Skalička�s hypothesis. However, before any evalua-
tion can take place, more Hungarian texts should be processed, and more agglutinative 
languages should be analysed. 
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Figure 7: Length as a function of frequency: fitting the function y =AxB to the text data. 

         Both axes logarithmic. 
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Laws and Theories in Quantitative Linguistics 

Peter Meyer1 
 
 
Abstract. According to a widespread conception, quantitative linguistics will eventually be able to 
explain empirical quantitative findings (such as Zipf�s Law) by deriving them from highly general 
stochastic linguistic �laws� that are assumed to be part of a general theory of human language (cf. Best 
(1999) for a summary of possible theoretical positions). Due to their formal proximity to methods used 
in the so-called exact sciences, theoretical explanations of this kind are assumed to be superior to the 
supposedly descriptive-only approaches of linguistic structuralism and its successors. In this paper I 
shall try to argue that on close inspection such claims turn out to be highly problematic, both on 
linguistic and on science-theoretical grounds. 
 
Keywords: Zipf, language laws, ceteris paribus laws, emergence, complexity theory,  
       explanation, science theory, word length, Menzerath 
 
 
0. Introduction 
 
Quantitative linguistics (henceforth, QL) as understood in the following considerations is 
concerned with accounting for quantifiable and measurable linguistic phenomena in terms of 
mathematical models such as curves, probability distributions, time series and the like. The 
mathematical formulas employed are attributed the status of scientific laws to the extent that 
they are deducible from very general principles or �axioms� and are thus firmly integrated into 
some nomological network. Inasmuch as investigations in QL fulfil these basic requirements, 
they are believed to be paradigm cases, indeed the very first of their kind in the whole history 
of linguistics, of empirical scientific theories in a narrow, science-theoretically justified sense, 
as opposed to purely descriptive and taxonomical approaches in the traditional, �qualitative� 
branches of linguistics, the latter being therefore charged with failing to attain the high 
methodological standards of the natural sciences (Altmann 2002, Altmann, Lehfeldt 2002 
provide sufficient documentation for these claims). Likewise, G. K. Zipf, one of the founders 
of the contemporary methodology of QL, has lately been advanced to being �the first lan-
guage theoretician�, even the Newton of a new kind of theoretical, namely, �Zipfian� 
linguistics (Altmann 2002, 22; 25). 

The pungent methodological criticism of �traditional�, �qualitative� linguistic approaches 
advanced in the QL literature constitutes a good starting point for the considerations to 
follow, since the basic science-theoretical and linguistic assumptions on which most work in 
QL is founded are to be understood as a corollary of this rejection of qualitative and 
descriptive methods. The criticism in question is, as I would like to show, based on a fairly 
restrictive and questionable notion of scientific theory. Thus for Altmann (2002, 19), 
�qualitative� accounts for linguistic phenomena necessarily remain at a �proto-scientific level� 
because they cannot �satisfy the claims of natural sciences�. In remarks such as these a certain 
normative science-theoretical stance becomes apparent, a stance according to which theories 

                                                 
1 Address correspondence to: Peter Meyer, Seminar für Slavische Philologie, Georg-August-Universität 
Göttingen, Humboldtallee 19, D-37073 Göttingen; e-mail: meyer-peter@gmx.de 
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that deserve to be called empirical and scientific have to be modeled following the example 
set by the natural sciences, or strictly speaking, by axiomatized fundamental physics only. 
This attitude seems to date back to at least the days of the Logical Positivists and may firmly 
be said to be superseded by a much more differentiated contemporary discussion, represented, 
e.g., in textbooks such as (Balzer 1997). From the ample literature on the subject, it is usually 
only Mario Bunge whose works are quoted in support. Bunge (1995, 3) demands that 
linguistics confine its methods to quantifiable magnitudes that are referred to by the laws of a 
scientific theory proper: 

 
Can every feature be quantitated, that is, turned into a magnitude? I submit that only one property is, 
with all certainty, intrinsically qualitative, namely existence. I also submit that in every other case 
quantitation depends exclusively on our ability and interest, so that in the face of failure to quantitate we 
should suspend judgement and encourage others to try. 

 
All this amounts to is an ill-founded profession of faith2 that is refuted not only by well-
established scientific practice in the social sciences and in the humanities. Recent science-
theoretical surveys abound with reconstructions of purely qualitative theories (see, e.g., 
Balzer 1997 or Balzer, Moulines, Sneed 1987). Linguistics is a field that provides some 
paradigm cases of successful scientific modeling that fully meet explanatory requirements. 
The reconstructive methodology of historical linguistics is a case in point, providing, at least 
to a certain extent, even the possibility of prediction. There is no good reason not to call, say, 
some historical grammar of the Indo-European languages such as the one summarized in 
Beekes (1995) a partial (and admittedly not fully explicit)3 theory of the historical 
development and relationship between the languages in question. The hypothetico-deductive 
method, which is often seen as a cornerstone of modern science, has undoubtedly become a 
paramount methodological instrument of contemporary �qualitative� linguistics, mostly due to 
the influence of Chomsky�s writings whose theory of human language, at least in its modern 
principles-and-parameters guise, belongs among the most convincing examples of �non-
numerical� theories, notwithstanding logically independent quarrels about whether it is good 
or �approximately true� theory.4 Even any good traditional grammar or dictionary of a 
language is a theory of that language, however incomplete, implicit and embryonic. Many 
concepts of such language theories are, pace Bunge, inherently qualitative, presupposing a 
yes-no decision that cannot reasonably be made �fuzzy� or otherwise turned into a quantitative 
magnitude. A certain lexeme or phoneme either appears in this or that utterance token or it 
does not appear. Tertium non datur: A lexeme cannot be said to appear in the utterance �to a 
degree of 70%�, although it would of course be possible to say, e.g., that �70% of all speakers 
think that lexeme A occurs in this utterance�. But even in such a quantitative judgment a class 
of discretely individuated lexemes (among them, lexeme A) is already inevitably 
presupposed. As we shall see in section 6, it is precisely (and, from the point of view of QL, 

                                                 
2 Ironically, the only qualitative property Bunge accepts at all, existence, is not regarded as a property at all by 
the vast majority of philosophers since Kant. 
3 It is important to notice that there are fundamental limits to explicitness even in highly formalizable theories of 
the �exact sciences�. To give but one example, according to one of the most eminent researchers in this field of 
the philosophy of science, a deductive axiomatization of experimental physics is impossible (Suppes 1998). 
4 The theory of language advanced by Chomsky and his followers tends to be misdescribed in QL writings as a 
mere formalism to express language-specific rules of grammar that have been found by inductive generalization. 
As a matter of fact, however, contemporary generative grammar takes as its axioms, amongst other things, the 
uniform initial state of an assumed human language faculty and deductively derives from these axioms, amongst 
other things, predictions as to the implicit knowledge of an adult native speaker under given experiential 
boundary conditions. This implicit knowledge can be tested using empirical methods. Hence, modern generative 
methodology fulfils all requirements for theoryhood typically formulated in QL. See Chomsky (2000) for an 
accessible recent presentation. 
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ironically) modern complexity theory and related developments in abstract evolution theory 
that provide some deep arguments in favor of the inevitability and irreducibility of qualitative, 
descriptive and functional accounts of certain complex systems. 

Bunge�s demand that all linguistic properties be quantifiable is an outgrowth of a certain 
general view on what characterizes a genuine scientific theory. A concise recent summary of 
this view can be found in (Altmann, Lehfeldt [to appear]). According to the authors, the 
notions of �explanation� and �law� are adequate only in case the fundamental statements of the 
theory in question are of a dynamic nature in an abstract, quantitative sense, that is, represent-
able as difference or differential equations or as self-regulation schemata in some sort of 
systems theory. Once again, we are left with some sort of metatheoretical credo that leaves 
open why this should be the only modus operandi allowed in modern science, let alone 
linguistics, particularly as the immense complexity of social and neurophysiological processes 
that jointly underlie the dynamics of language make it seem rather implausible that this 
dynamics can be modeled in any interesting way in terms of, say, a bunch of differential or 
equilibrium equations. The ultima ratio behind the methodological propensities typical of QL 
proponents seems to be the irresistible attraction exerted by the now-fashionable scientific 
paradigms of chaos and complexity theory; see below for some critical evaluation. For the 
time being, the only thing that can justifiably be said with respect to the methodology of QL is 
that it is a way of looking at language that is complementary to traditional approaches and 
cannot, for this reason, be translated into the conceptual apparatus of the latter or vice versa. 

In a number of publications (e.g., Altmann, Lehfeldt 2002) the notion of �theory� is defin-
ed in contradistinction to mere inductive generalization as allegedly offered by traditional, 
�qualitative� approaches. To begin with, it must be stressed again that this allegation ignores 
the role of deductive-nomological explanations and of the hypothetico-deductive method in 
contemporary linguistics. Many of Chomsky�s writings sound remarkably similar to recent 
contributions to QL in rejecting arbitrary inventorization of data and superficial empirical 
generalizations in favor of deep and unified explanatory principles from which empirical 
generalizations can be deduced; for a succinct early statement cf. Chomsky (1978). In this 
paper, I will assess several criteria proposed in the QL literature that are used to justify the 
status of a scientific theory for QL models. These criteria may be summarized as follows. The 
backbone of any scientific theory proper is formed by laws. Typical empirical hypotheses of 
QL (such as, say, distribution of word length in texts) are indeed laws in a strict science-
theoretical sense since they are embedded in a nomological network, i.e. they are deducible 
from underlying postulates or �axioms�; and, by virtue of referring to measurable quantities, 
these laws are subject to empirical confirmation or disconfirmation.  

It is the main objective of this paper to maintain that the quantitative regularities dis-
covered so far in QL do not pass as law-like statements, that is, as analogues to what qualifies 
as �laws� in the natural sciences, particularly in fundamental physics. As a consequence, 
explanations for these regularities (in a science-theoretically established sense of �explana-
tion�) are still wanting. It is, however, a delicate task to assess the possible impact and import-
ance of the claims just put forth on QL research work. What is not claimed here is that the 
results obtained so far in QL are empirically or theoretically void. Nor will it be the purpose 
of the following remarks to impose certain normative science-theoretical requirements on QL. 
Quite to the contrary I would like to suggest that QL faces the danger of being caught up in a 
false picture of what constitutes �real� science, a picture that could serve as a problematic 
guideline to further research work in drawing the wrong dividing line between what should be 
considered �good� and �bad� questions in QL. 

Most of the critical reflections put forward in the present article are not novel. As early as 
in 1959, a stimulating review article on the book Logique, langage et théorie de l�information 
by B. Mandelbrot, L. Apostel, and A. Morf (Lees 1959) succinctly put its fingers on many of 
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the conceptual problems and inherent limitations of a quantitative treatment of language. I 
shall permit myself to quote some of Lees�s still relevant remarks in footnotes. In addition, it 
must be emphasized that some of the chief architects of contemporary QL are very explicitly 
aware of unresolved theoretical problems in the discipline (see esp. Grotjahn, Altmann 1993; 
Altmann 1999; Altmann 2002). 
 
 
1. A case study: word length 
 
For the purposes of our discussion I will take the theoretical treatment of word length 
distribution in German texts presented in Altmann, Best (1996) as a typical example of how a 
certain quantitative law-like statement can be taken to explain certain statistical regularities. 
Similar examples would of course have to be discussed for other putative laws of QL. I will 
simply assume here that the foundational problems observed with respect to my example case 
also arise in the context of other would-be QL laws, for analogous reasons. 

The fact that the negative binomial distribution can be fitted well to the empirical 
distribution of word length (measured as number of syllables) in a wide variety of German 
texts is explained in this paper by stipulating an underlying self-regulative mechanism that 
consists in mutual influence between neighboring word length classes. In accordance with the 
general framework proposed in Wimmer et al. (1994), it is assumed that this influence implies 
a proportionality relation between neighboring classes: 
 
(1) ( ) 1−= xx PxgP  

 
(1) is assumed to be the underlying law-like principle5 that governs word length distribution 
in general. g(x) is a language-specific proportionality function that, for the German texts in 
question, is assumed to be representable as 
 

(2) ( )
cx

bxaxg += . 

 
Here, a is taken to represent something like the length-invariant part of the German lexicon, 
whereas b is an author-specific modification factor (the author chooses to employ shorter or 
longer words, according to stylistic and other needs) and c �stands for� the communicative 
interests of potential text recipients (such as minimizing the effort of decoding a given 
message). From (1) and (2), an explicit representation of Px can be derived. The deduction 
yields a family of univariate discrete probability distributions with two parameters, namely, 
that of the negative binomial distribution. Now this family of distributions can indeed be 
fitted to the German text data in question. Thus, the underlying principles seem to receive 
empirical confirmation. In what follows, we will examine in turn the different parts of the 
methodology just sketched. 
 
 
 
 
                                                 
5 Thus, Wimmer, Altmann (1994) write: �We consider statement (1) as a law-like hypothesis since it fulfills the 
requirements put on laws �, above all generality, systemicity and confirmation. Nevertheless it is merely a 
skeleton that must be filled with flesh taken from languages, genres and authors, all of them bringing different 
boundary and subsidiary conditions which can vary in the life of language or of an author. Thus no specific 
formula following from (1) holds eternally for all languages or even one language.� 
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2. The notion of law 
 
It will be useful to compile some definitional statements about �lawlikeliness� as found in the 
QL literature. Altmann (1993) writes, quoting Bunge in support: 
 

�Only syntactically well-formed, semantically meaningful general statements that are empirically 
testable, not including observational concepts, stating something about invariances and going beyond 
our present knowledge should be considered as hypotheses. If a hypothesis is derived from assumptions 
(axioms) or from a theory, if it is corroborated by an empirical test and if it can be connected with other 
similar statements (systematized), then we can call it a law.� 

 
In what follows I will examine in particular whether QL hypotheses are indeed derivable from 
assumptions or axioms (section 3) and to what extent they can be corroborated empirically 
(section 4). 
 
Empirical confirmation of QL hypotheses such as (1) above is impeded by the possibility of 
�exceptions� that have to be taken account of in some way. Altmann, Erat, Hřebíček 1996 
write on behalf of the empirical validity of (1): 
 

We can consider the probability distribution as a kind of attractor, a form existing in every language � 
i.e. existing unconsciously in the text users � to which the empirical distributions of the given variable 
tend. Of course, there can be a number of different attractors exerting their impact on individual writers 
or on individual genres, and each of them can evolve in the course of time. As a matter of fact, formula 
(1) merely represents a mechanism which can take into account a number of boundary or subsidiary 
conditions, as is the case in natural laws, too. In practice, if a text deviates from the supposed attractor, 
we say that it wanders to another attractor, which is quite a normal circumstance in the life of a text 
producer. This wandering can be expressed in different ways (cf. Wimmer et al. 1994), e.g. in the 
modification of g(x), in the increase of the order of the difference equation (1), in the modification of 
the individual frequency classes, in the mixing, compounding or convolution of probability 
distributions, etc. 

 
Section 4 will also criticize the strategy hinted at in this quotation, namely of attributing QL 
hypotheses the status of ceteris paribus laws that are effective only under certain boundary 
conditions that cannot be listed explicitly and exhaustively. 

In addition, the above quote also refers to underlying �mechanisms� that are supposed to 
be described by the laws of a theory.6 Section 5 will deal with some of the stipulated language 
mechanisms that are assumed to �generate� the quantitative regularities that have been 
observed so far. 
 
 
3. Deriving laws from axioms 
 
Turning back to our case study, it must be stressed at the outset that a purely mathematical 
deduction of the negative binomial distribution from the difference equation (1) plus 
specification (2) does not provide us with a theoretical explanation of the distribution, since it 
does not embed it in a nomological network that has an independent justification. (1) and (2) 
are nothing but a mathematically equivalent reformulation of the probability distribution.7 

                                                 
6 Thus, Altmann (1993) writes: �Laws are statements about mechanisms which generate observable 
phenomena.� 
7 Altmann (1980) acknowledges this point, when he comments on the derivation of Menzerath�s law from a 
simple differential equation: �The derivation from a differential equation is not sufficient in order to award the 
statement (4) [Menzerath�s law in a quantitative formulation, P.M.] the status of a law. It remains a theoretically 
not fully validated hypothesis as long as it is not set in relation to other laws of language, i.e. until it is 



Laws and theories in quantitative linguistics 67 

What we need is a testable criterion that tells us when it is appropriate to assume that (1) and 
(2) hold. 

Recent efforts in QL (cf. Wimmer, Altmann 2003) concentrate on finding a �unified 
derivation� of linguistic laws. This amounts to finding a very general class of difference / 
differential equations8 from which all those formulas that have been employed in descriptive 
QL models so far can be derived. While the principle idea of the authors consists in epistem-
ically integrating disparate research domains under the heading of a new �supertheory� that 
contains the old particular ones as special cases, we are eventually left with the observation 
that different mathematical formulas employed in QL � representing variously probability 
masses or densities or function curves � may be transformed into some sort of very general 
�canonical form�. There are no good reasons to assume that this purely formal analogy 
between extremely different formulas used in wildly disparate interpretations (as probability 
densities, as functions etc.) has a deeper reason connected somehow with (universal) 
properties of human language. All we get is a purely mathematical observation that has not 
yet any clear implications for the phenomena described with the aid of the respective 
formulas. 

To sum up: The observation that the family of probability distributions defined by (1) and 
(2) can be used to �model� word length in a variety of texts does not make (1) (or, for that 
matter, (1) cum (2)) a law statement, let alone a deductive-nomological explanation of 
observed word length distributions. For this to be the case, we would need some further 
justification for positing something like (1) as the general principle governing word length in 
human language. Interestingly, Wimmer et al. (1994) hint at some ideas to give (1) some 
initial plausibility: 
 

We assume that the various word length classes do not evolve independently of each other. If there is a 
gradual increase of disyllabic words in a language evolving from monosyllabism to polysyllabism �, 
this occurs as a function of the number of new meanings that must be coded and of the degree of 
polysemy and redundancy in the class of monosyllabic words. If the redundancy in this class has 
reached a critical level, the equilibrium must be restored by means of functional equivalents, e.g. tones, 
new phonemes, extension of phoneme distribution, variation of word length, etc. If a language has 
recourse to polysyllabism, the class of disyllabic words must necessarily be made proportional to that of 
monosyllables, i.e. in probabilistic terms 
 

P2 ~ P1. 
 
If a language is no longer restricted to monosyllabism and polysyllabic words are introduced, then self-
regulation comes into play and controls the whole frequency structure of word length. 
In the first step, i.e. when disyllabic words are introduced, proportionality can be considered as 
constant, i.e. P2 = aP1. If longer words come into existence, constant proportionality will be replaced by 
a function of length g(x). We thus obtain the basic formula 
 

(1) ( ) 1−= xx PxgP . 

 
Even for the simple case of a �monosyllabic� language developing disyllabic words, however, 
the authors� argument is far from clear. For a given text in the language in question, two 
probabilities must be posited, namely, the probabilities P1 and P2 that a given word form 
token in the text consists of one and two syllables respectively, where P1+P2=1, hence the 
                                                                                                                                                         
incorporated into a system of laws. Such a system does not exist at present, we merely suspect that it is somehow 
connected with the principle of least effort or with some not yet known principle of balance recompensating 
lengthening on one hand with shortening on the other.� 
8 The approach runs roughly as follows: The relative rate of change of a variable Y is taken to be dependent on 
the rate of change of one other independent variable X. The latter is itself controlled by different powers of X 
that are associated with different multiplicative factors. 
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proportionality factor a is already given as 11

1

−=
P

a . Now it is obvious that one cannot say 

of two numerical values that they stand in a proportionality relation to each others since only 
functions can be proportional to each other (f(x) and g(x) are proportional to each other iff g(x) 
= const. · f(x)). Thus, the proportionality posited by Wimmer et al. makes sense only 
inasmuch as word length probability is considered a function of some independent variable, 
e.g., text length. Empirical results show that the proportionality factor will vary from text to 
text, a point also stressed by the authors. Hence, the proportionality factor as assumed by the 
authors implies some kind of counterfactual conditional of the following kind: �Had we 
examined another text that is in all relevant respects similar to this text, we would have 
obtained the very same ratio of disyllabic to monosyllabic words.� As long as we do not have 
any non-circular account of what the phrase �in all relevant respects� means here, the 
conditional is virtually devoid of meaning. And even if we had such an account we would still 
be in need of a scientifically valid justification for the quantitative principle (1) besides the air 
of vague qualitative plausibility. Hence, the �proportionality principle� (1) remains unjustified 
in a strict sense of the word even for the simple case of a language restricted to two word 
length classes and g(x) = const., since we cannot figure out what proportionality should mean 
here at all. Analogously, for the general case, in which we do not have a proportionality 
constant but a �proportionality function�, principle (1) becomes literally tautological because, 
trivially, for any discrete univariate probability distribution P(x), (1) can be made true by 

defining a �proportionality function� g(x) that fulfills the equation ( ) ( )
( )1−

=
xP

xPxg . It is clear 

that principle (1) gains empirical character only by virtue of specifying g(x). However, we are 
not offered any theoretically well-founded restrictions on to what class of functions g(x) 
should belong, only some inductive evidence on what functions �worked well� in past 
investigations, that is, have led to a good fit for a reasonable amount of texts. Nor do we 
possess any criterion for predicting which selection among a set of �approved� functions will 
do well for a newly investigated text. In other words, (1) cannot be falsified; hence, it is not 
an empirical principle in any sense and, therefore, is not capable of being an �axiom� from 
which theorems of word length distribution could be derived. 

The reader might wonder whether the preceding remarks do not miss the very point of 
theoretical reasoning in QL since it is wrong to require that the �principles� from which we 
deduce testable theorems be themselves deducible or justifiable in terms of yet other 
principles or laws. Naturally, or so QL adherents may argue, at some point deduction must 
come to an end and we arrive at the �first principles�, that is, the �axioms�, of the theory, for 
which further justification is neither possible nor required. The extremely successful 
foundational equations of, say, Newtonian or quantum mechanics are far from intuitive 
plausibility (for the less obvious case of Newton�s second law see Weizsäcker 1985), but of 
course nobody would reject them for this reason. But why should anyone wish to embrace 
Newton�s second law as an axiom of classical mechanics but nevertheless deny some explicit 
version of (1) or �Zipf�s law� or �Menzerath�s law� the status of an axiom of QL, although in 
both cases empirical confirmation of statements (theorems) deduced from the alleged laws is 
indeed possible? The difference between the two cases is connected with the important fact, 
overlooked by classical Logical Empiricism, that not every formal deductive system is a 
theory, let alone an empirical theory. In the case of Newtonian mechanics we �know� which 
empirical (real-life) systems Newton�s three laws should be applicable to, that is, we are able 
to specify, though in a necessarily pragmatic yet non-circular fashion, the so-called �intended 
systems� of Newtonian mechanics. The specification of the set of intended systems is an 
essential constituent part of any empirical scientific theory, besides the formally defined 
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�models� or �axioms� themselves.9 The point is trivial enough to be restatable in any science-
theoretical framework: We must have some criterion that tells us which empirical phenomena 
the theory �talks about�, makes predictions of etc. This criterion must be independent of the 
specification of the theory�s axioms.10 Otherwise, astrology would count among the respect-
able scientific theories for the sole reason that its applicability could be restricted post hoc to 
those cases where prediction turned out to be successful. As far as our principle (1) (where 
g(x) must be assumed to belong to a family of previously specified functions) is concerned, 
there is no clearly defined class of intended systems for it. All we can point to is statements 
about some families of probability distributions that �work well� for word length in a vaguely 
specified range of texts. We have no idea why (1) � in a version specified for g(x) � cannot be 
applied to this or that text; prediction is impossible. So all we can safely say is that (1) holds 
whenever it is found to hold. In this respect at least, QL does not yet fare much better than 
astrology. 

The problem of parameter interpretation looms large in the above example just as else-
where (cf. Altmann 2002). The parameters that appear in the various �proportionality 
functions� proposed so far in the literature suffer from a complete lack of interpretability; they 
are just numbers obtained by fitting the model function class to the data at hand and vary from 
text to text without being predictable or connectable to other empirical statements about the 
texts in question. To be sure, interpretations have been proposed but they are plainly ad hoc 
and not susceptible to any sort of confirmation. In the interpretation proposed by Wimmer et 
al. (1994), the parameters involved come to be loosely associated with Zipfian �forces�. None 
of the three postulated �factors� is measurable (and no method of measuring seems to be 
forthcoming either), so empirical confirmation of the interpretations is impossible. Note that 
the authors do not even have a proper justification for associating the three factors assumed 
with the three parameters in the way they actually do. Why should parameter c �stand for� the 
communicative interests of communicants? Increasing c indeed shifts the probability 
distribution toward smaller average word length. This seems to be the motivation behind the 
interpretation associated with c, since short word lengths will be favoured on the production 
side of the communication process. But, of course, we might as well assume a or b to be the 
parameter associated with the factor in question, as long as we say that a (or b) is inversely 
proportional to the communicative interests of speech producers. We must conclude that the 
interpretations suggested so far are but a �fifth wheel�, an ornament that plays no empirically 
testable role within the theoretical apparatus at all. 

•  Note that parameter interpretability does not imply some obscure requirement to the 
effect that the parameters correspond to directly observable magnitudes. A (variable) 
parameter may be said to be interpretable just in case there is another theory or law that 
makes an independent statement about the values the parameter may have. In other words, the 
parameter must appear in at least two logically independent law statements: The �nomological 
network� must be tight enough to avoid the danger of immunization against falsifiability. 

                                                 
9 See Balzer, Moulines, Sneed (1987) for details concerning the concept of �intended system� introduced here. 
Note that the point I want to make here does not hinge upon selecting the particular �non-statement� or 
�structuralist� science-theoretical framework as presented in these two books. The authors use the term �intended 
applications� for what I, following Balzer (1997), prefer to call �intended systems� here.  
10 The range of intended systems should not be thought of as a neatly pre-defined set. As science progresses, new 
candidates for intended systems may be discovered. In this case, the axioms of the theory indeed define 
necessary conditions for candidatehood, a phenomenon called �(partial) autodetermination� in the structuralist 
approach. This must not be taken to imply that, at least in some cases, no independent specification of a class of 
intended systems is necessary since autodetermination is a phenomenon of theory development through time. 
Synchronically, criteria for recognizing the currently agreed-upon intended systems of a theory must be 
sufficiently clear-cut to meet with consensus of the scientific community. 
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However, it is precisely this nomological network that is not yet in sight for QL. Lack of 
interpretable parameters turns out to be yet another indication for lack of theory. 
 
 
4. Inductive corroboration (testability) 
 
The stochastic hypotheses advanced in QL cannot be confirmed directly but only discon-
firmed. Usually standard Neyman-Pearson hypothesis testing is adduced to show whether 
linguistic data, say, the distribution of word length in a corpus of texts, is compatible with a 
certain hypothesis. There are difficult problems with this type of statistical confirmation, 
many of which are discussed at length in Grotjahn, Altmann (1993). The main problem is that 
if fitting of the proposed probability distribution or curve is successful, we have only shown 
that there is no good empirical reason to reject the hypothesis: If the hypothesis were correct, 
then the observed discrepancy between the actual data and the expected values according to 
the hypothesis would not be too improbable. Usually, a large number of quantitative models 
can be applied successfully in the sense that fitting is possible. The difficult question is to 
select the �right� model; it can only be solved using theoretical considerations that are still 
absent because we have no principled methodology for comparing different models or 
different �derivations� of the same model. 

In order to test �general hypotheses in which no observational concepts (such as sound, 
syllable, word) occur� (Altmann 1980), it is necessary to use �observational concepts�, that is, 
theoretical terms as used in qualitative descriptive linguistics. In investigations on word 
length, we need operational criteria that individuate words and tell us how long they are (as 
measured in syllables or phonemes). It is standard practice in QL to use whatever rough-and-
ready criteria are at hand (take words to be sequences of letters between blanks etc.), as long 
as the procedure chosen leads to statistically significant results. In its contemporary guise, QL 
has no choice here, since there are no known �derivations� of observed quantitative 
regularities that would somehow theoretically reflect the nature of the qualitative concepts 
presupposed, i.e., the role they have to play in the qualitative theories that give them their 
meanings. It is very difficult to see whether such derivations would be possible at all since QL 
is not an �autonomous� linguistic subdiscipline in the sense of Itkonen (1983); it presupposes 
with conceptual necessity an �autonomous�, i.e. traditional and qualitative, description of 
linguistic utterances. It is important to understand why the stochastic methods of QL cannot 
replace a qualitative treatment of notions such as �word� or �syllable�. Standard linguistic 
notions are token-based, that is, they presuppose the possibility of deciding for any given 
token utterance of which words, syllables, etc. it consists. This decision hinges upon the 
theoretical role of the notions employed, that is, their role within the qualitative theory of that 
language. QL notions can only be used to make assertions about statistical populations of 
utterances and do thus not have the capacity of making theoretically relevant descriptive 
decisions on single token utterances. Hence, even if a certain qualitative concept of �word in 
language L� does not lead to interesting quantitative generalizations about texts in L, this can 
no more be taken to imply that the qualitative concept is to be replaced by another, �better� 
one, than any amount of neuro- or psycholinguistic research can lead to �amending� or 
�revising� a qualitative concept. Even if we had a theoretically deducible stochastic regularity 
that works well with a certain concept (set of criteria) C1 of �word� but does not work at all 
with another set of criteria C2, this would not tell us that we should henceforth use C1 instead 
of C2 in our qualitative descriptions since the viability of a qualitative concept can only be 
judged relative to the qualitative theory it forms a part of. It is the qualitative delimitation of 
the concept that gives a stochastic statement its meaning in the first place. Observable 
statistical regularities about artificial constructs that have no independently discernible place 
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in a linguistic description (as might be the case with C1) are virtually meaningless. As B. 
Mandelbrot has pointed out, qualitative and stochastic treatments of language are mutually 
incompatible and complementary; I would like to add that the stochastic treatment is 
conceptually dependent on the qualitative one but not vice versa. 

It should be clear from the outset that none of the quantitative �laws� proposed by QL so 
far can be expected to hold without exceptions, in striking contradistinction to the laws of 
fundamental physics. Given any QL �law�, it is always possible to artificially construct a 
counterexample, say, a text violating the stipulated stochastic regularity. As a matter of fact, 
exceptions to the inductive generalizations proposed in QL work are found anyway as soon as 
sufficiently large corpora of samples (usually, texts) are examined. The observations just 
mentioned could, and indeed should, be taken as an indication that QL does not have the same 
science-theoretical architecture as, say, fundamental physics, where �laws� are assumed to 
hold without exception. Generally speaking, there are no good a priori reasons to believe that 
any �proper� scientific theory must have laws in the very same sense that a small subset of the 
natural sciences is based on laws. QL proponents, however, would like to see the scientific 
apparatus of QL in complete conformity with that of the natural sciences. 

It is often assumed that the inductive generalizations of QL are indeed �laws� proper, if 
only a special kind of them, to wit, ceteris paribus laws that hold only when certain necessary 
preconditions are satisfied. However, since those necessary preconditions can � in virtue of 
the ceteris paribus restriction � not be stated explicitly and are, therefore, not specified by the 
law itself, the ceteris paribus clauses amount to no more than a trivial immunization strategy. 

Thus, when one assumes, with Altmann (2002, 22), that �language laws hold only for 
homogeneous data� then it is difficult to avoid downright circularity, as homogeneity of data 
can most likely be defined only in terms of the law in question: data are homogeneous just in 
case the law is applicable to them. 

Moreover, in the case of supposed QL laws, violations can be produced systematically 
and intentionally, as I already pointed out. To give but one example, given any specific 
candidate for a word length distribution regularity in natural language texts, it is possible to 
systematically construct texts that cannot be subsumed under the proposed regularity. 
Regularities that can be violated in an operational manner are neither laws nor ceteris 
paribus-laws (see Mott 1992, 462 for further elaboration of this point). 

The reader might protest here, pointing out that there does indeed exist a well-established 
notion of ceteris paribus-law in science theory. In a similar spirit, Lehfeldt, Altmann (2002, 
331; 341) hint at the oft-repeated claim that laws in all sciences always come with some 
ceteris paribus clause, obviously to turn down the suspicion that QL might be a second class 
science, when compared to fundamental physics. However, the historical source of such 
opinions is a misunderstanding of an important insight by Hempel formulated, e.g., in Hempel 
(1988). Earman, Roberts (1999) provide an excellent discussion of this point. The following 
quotations may serve as a summary of their argument: 
 

Hempel�s claim is that typically a theory T of the advanced sciences will not have any logically 
contingent consequence S whose non-logical vocabulary belongs entirely to VA [the set of �antecedently 
understood terms� of T, P.M.]. What we can hope to derive from T are consequences of the form P → S, 
where again S is a logically contingent sentence whose non-logical vocabulary belongs entirely to VA 
and P is a �proviso� that requires the use of Vc [the set of theoretical terms first introduced with T, 
P.M.].11 
Hempel�s provisos are � simply conditions of application of a theory which is intended to state lawlike 
generalizations that hold without qualification. Indeed, Hempel makes it explicit that his provisos are 
clauses that must be attached to applications of a theory rather than to law-statements�12 

                                                 
11 Earman, Roberts (1999, 442). 
12 Earman, Roberts (1999, 444). 
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There is, in fact, an ongoing debate in the philosophy of science about whether a substantial 
notion of empirically non-void ceteris paribus laws can be found at all. J. Earman and J. 
Roberts provide a careful and painstaking survey of recent proposals on saving ceteris 
paribus laws from vacuity and argue that �not only is there no persuasive analysis of the truth 
conditions for ceteris paribus laws, there is not even an acceptable account of how they are to 
be saved from triviality or how they are to be melded with standard scientific methodology� 
(1999, 439). It is worth quoting their conclusion at some length: 
 

There is a clear sense to be given to the notion of a �near-law�, i.e. a generalization that is not a strict 
law, but that deserves to be called a �near-law� because it is, in a precise sense, true or approximately 
true in almost all intended applications, because it plays the role of laws in giving explanations, 
supporting counterfactuals etc., and because it is clear that it makes definite claims about the world and 
can be confirmed or disconfirmed empirically. But, we claim, the most clear paradigms of such laws 
(viz. the laws of phenomenological thermodynamics) are not thought of as ceteris paribus laws, and 
statements that are thought of as ceteris paribus laws do not answer to this clear sense of a �near-law�. 
[�] 
In the light of this, we wish to make the following suggestion. �Ceteris paribus laws� are not what 
many philosophers have taken them to be, that is, they are not elements of typical scientific theories that 
play the same kinds of roles in the practice of science that less problematic statements such as strict 
laws or near-laws (in the sense just defined) play. Rather, a �ceteris paribus law� is an element of a 
�work in progress�, an embryonic theory on its way to being developed to the point where it makes 
definite claims about the world. [�] To revive a now-unfashionable notion, �ceteris paribus laws� 
belong to the context of discovery rather than to the context of justification. [�] 
If laws are needed for some purpose, then we maintain that only laws will do, and if �ceteris paribus 
laws� are the only things on offer, then what is needed is better science, and no amount of logical 
analysis on the part of philosophers will render the �ceteris paribus laws� capable of doing the job of 
laws (1999, 465-466). 

 
Earman and Roberts concede that the remarks just quoted look �at first glance to be a negative 
judgment about the special sciences as compared with fundamental physics�. However, their 
intent is to reject a �misguided egalitarianism about the sciences�: 
 

It is not �ceteris paribus all the way down� � ceteris paribus stops at the level of fundamental physics. 
But we are not physics chauvinists [�], for we deny that the mark of a good science is its similarity to 
fundamental physics. The concept of a law of nature seems to us to be an important one for 
understanding what physics is up to, but it is a misguided egalitarianism that insists that what goes for 
physics goes for all the sciences. The special sciences need not be in the business of stating laws of 
nature at all, and this blocks the inference from the legitimacy of these sciences to the legitimacy of 
ceteris paribus laws. For us, it is ironic that an effort to justify the special sciences takes the form of 
trying to force them into a straitjacket modeled on physics. We think this effort should be resisted, since 
it damages both our understanding of the special sciences and our understanding of the concept of a law 
of nature (1999, 472). 

 
 
5. Mechanisms or metaphors? 
 
In view of these difficulties it is natural to look for a scientific instead of a science-theoretical 
treatment of systems that show a certain behavior in a �more often than not� fashion which is 
not open to a deterministic or mechanistic micro-level description. And indeed the past few 
decades have seen the rise of a whole bunch of scientific disciplines � theories of complexity, 
catastrophe, chaos, dissipative and self-organizing systems � that deal with phenomena of this 
kind. So it is hardly surprising to find many QL researchers using concepts like �attractor�, 
�self-organized criticality� and �synergetic order parameter� as background metaphors for 
quantitative descriptions of linguistic phenomena. 
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Of course, it is the received view of modern QL that these concepts are not used merely 
metaphorically: language is assumed to simply be a self-organizing system that functions in a 
way analogous to, say, self-regulating dissipative systems in chemistry. However, as Kanit-
scheider (1998, 23) emphasizes, the mere claim of analogy is not enough; it is a hypothesis 
that has to be proved on empirical grounds. Hence, transferring a formal model such as 
Haken�s synergetics to a new domain of phenomena is tantamount to setting up a new theory 
that must be validated independently of previous applications of the model in other domains.13 
In other words, the right motto should be: first set up your linguistic theory, then try to find a 
common denominator with theories from other fields. 

A typical example of an ill-defined formal metaphor is the rather overused notion of 
attractor. Take the following statement: �Drawing on chaos theory, one supposes that theor-
etical linguistic units � often referred to as �-emes� in theoretical language � are attractors, 
and that variations and changes in the unit represent shifts toward another attractor [�]. Only 
against this background is it possible to speak of self-organization in language, anyway� 
(Altmann 1996). It may well be doubted whether the attractor concept, when applied to 
notions of traditional linguistics, provides any additional theoretical insights or whether all we 
get is a vague feeling of plausibility. If a statement like �phonemes are attractors� is to have 
any empirical content, we must have a sufficiently elaborated mathematical concept of 
�attractorhood� that may be applied to linguistic data in order to generate empirically testable 
hypotheses. Nothing of this kind seems to be in sight today. 

It might be instructive at this point to discuss a particular example in some depth in order 
to shed some light on the purported explanatory power of the attractor metaphor. Lehfeldt, 
Altmann (2002) try to account for a certain sound change in Old Russian, the so-called fall of 
the two yer vowels.14 Their theoretical starting point is �Menzerath�s law� that, in its modern 
quantitative version (which is now usually called the Menzerath-Altmann Law; principal 
references are Altmann 1980 and Altmann, Schwibbe 1989), relates the length of a linguistic 
construction to the length of its constituents through an inverse proportionality, or, more 
generally speaking, through a power law. Applied to word length, the �law� in its basic form 
may be written as the equation bKxY −= , where x symbolizes word length as expressed in 
number of syllables and Y is the average number of phonemes per syllable in words of x syl-
lables length in a given, homogeneous text. K and b are constants that may vary for different 
                                                 
13 Cf. Lees� critical comments (1959, 285ff.) on an older attempt to find a useful cross-discipline analogy 
between linguistics and thermodynamics based on the notion of entropy: �It is difficult to see, however, how this 
formal similarity between measuring the elementary message capacity of a source by partition of symbol 
probabilities and measuring the unavailability of heat energy by partition of atomic states can be pushed any 
deeper.� (293); �To summarize, then: for good reasons, the communications engineer has been led to charac-
terize the utility of a message source or transmission line in terms of the variety of distinct messages which it 
permits one to identify (with no consideration of the meaning or understandableness of the messages), and the 
most convenient expression for this measure involves the logarithm of a probability. For independent reasons, 
the physicist has been led to characterize the irreversibility of natural energy transformations in terms of a 
thermodynamic property of systems, the entropy, and he has shown that this property is calculable from the 
distribution of the particles of the system among available energy states, the expression for entropy then 
involving the logarithm of a probability. Therefore, the expression for selective information-content and for 
physical entropy are formally similar; in fact, the very same type of expression, involving the logarithm of a 
probability, may be used in any number of unrelated problems as a measure of degree of equidistribution.� (295). 
A similar critique of useless formal analogies may be launched against modern complexity theory; as Horgan 
writes in a well-known popular science article (1995): �Too many simulators also suffer from what Cowan calls 
the reminiscence syndrome. �They say, �Look, isn�t this reminiscent of a biological or physical phenomenon!� 
They jump in right away as if it�s a decent model for the phenomenon, and usually of course it�s just got some 
accidental features that make it look like something.� 
14 The sound change took place not only in Old Russian, but in all Slavic languages, with different results in 
detail. Basically, two vowels going back to PIE *i  and *u were eliminated in certain positions and merged with 
other vowels (in Old Russian, e and o) in all other positions. 



Peter Meyer 74 

texts. As is obvious, Menzerath�s Law dictates a monotonic functional relationship between 
construct and constituent size. Now, in Old Russian before 1000 AD certain syllable-internal 
phonotactic restrictions precluded this monotonicity. The authors conclude that Menzerath�s 
Law � in its basic form � was not operative at that time; indeed, curve-fitting leads to negative 
results for texts that were written before the fall of the yers. The general line of their argument 
makes use of a ceteris paribus reading of the law as criticized above: �It is important to 
remember right from the outset that Menzerath�s law, like any other law, holds only when the 
necessary preconditions for it hold.�15 Talk of �necessary preconditions� is somehow mis-
placed here since there is no way to  actually specify those preconditions except in a circular 
way: If the alleged law fails in a particular case of application, then it is simply assumed that 
some unknown precondition does not hold. The phonotactic facts of Old Russian before the 
fall of the yers do not provide any such unfulfilled precondition. They just give some 
independent prima-facie-indication that makes clear from the outset why we may not even 
expect Menzerath�s Law to be applicable here. In saying �Menzerath�s Law does not hold 
here because the phonotactics render a monotonic relationship impossible� the because must 
not be understood causally, but epistemically, as in �Mr. Lees is not ill because I saw him 
playing with his children on the street just an hour ago.� 

The assumption that Menzerath�s Law was not operative in Old Russian before the fall of 
the yers has two different possible readings that should be distinguished sharply but get 
somehow blurred in the authors� presentation, as becomes obvious in their surprising claim 
(2002, 341) that during the development of Old Russian phonology Menzerath�s Law never 
lost its force, functioning as an attractor that tries to gain control but sometimes, as the reader 
has to surmise, nevertheless loses its power. The two readings I announced are as follows. 
 
a) Menzerath�s Law, as applied to the ratio of syllable length to word length, holds without 

exceptions; due to interfering factors, however, it may happen that it does not directly 
show up in the data. � This reading has its analogue in physics. Thus, Newton�s law of 
gravitation knows from no exception whatsoever within the framework of classical 
mechanics, but if we investigate the trajectory of a feather falling in the spring air, the law 
does not, so to speak, �shine through� the data because of additional complications such as 
movement and friction of air. Newton�s theory of gravitation is not falsified by such an 
example, as we can make up, if only in principle, an empirical theory that accounts for the 
additional factors. Vector addition of the effects of these factors to the effects of Newton�s 

2
21

r
mmF ⋅γ= should then yield what is actually observed. Now, the understanding just 

sketched is implicit in Lehfeldt�s and Altmann�s talk (2002, 333) of the �possibility of 
anomalies and boundary conditions that disturb the monotonic direction of the curve.� 
Indeed, a standard strategy in QL to cope with failures of alleged ceteris paribus laws is to 
assume that not all causally relevant factors have been found and accounted for in the 
deduction of the stochastic regularity postulated. This leads to assuming some ill-defined 
disturbance factor that is reflected in the derivation by means of one or more additional 
parameters. As the authors show, modified versions of Menzerath�s Law (obtained by 
adding one or even two parameters to the differential equation that the Law obeys) can 
indeed be fitted successfully to the Old Russian data in question. However, in contra-
distinction to our example from physics, no independent theory of the assumed disturb-
ance factors is available, that is, the additional parameters do not receive any empirical 
interpretation. All that we get, then, is a statement to the effect that adding new parameters 

                                                 
15 Lehfeldt, Altmann 2002, 331. All following translations from the Russian text of this article into English are 
mine; in the above quotation, emphasis is mine. 
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to a formula will improve the results of curve-fitting � a mathematical truism with no 
immediate linguistic implications. 

b) Menzerath�s Law, as applied to the ratio of syllable length to word length, is not operative 
in certain �extremal� linguistic situations, such as the one of Old Russian before 1000 AD. 
In this reading, talk of attractors seems to be more appropriate since the dynamics of a 
system might, under certain circumstances, be far removed from the system�s attractor(s). 
In standard definitions of the attractor concept, however, once a system has attained its 
attractor state it will simply remain there forever. The only way, then, to explain why Old 
Russian before 1000 AD had left the �Menzerath attractor� is to assume that the Old 
Russian language system was, during a certain period of time, determined by the effects of 
another attractor. Since attractors are abstract characterizations of the dynamics of a 
system, this amounts to claiming that Old Russian, at a certain stage of development, 
changed the overall look of its dynamics at least twice, losing the �Menzerath attractor� 
before 1000 AD (and being forced to �wander� to another one) and reenacting it after-
wards. Of course, this sort of explanation simply shifts the burden of explanation since 
what we would need now is (i) a theory of the way the dynamics changes, constructing 
and deleting attractors in the course of time, and (ii) an explication of the presupposed 
�normalcy� or �default character� of the �Menzerath attractor� that is implied by the �law� 
terminology. Put simply, the first requirement says that if we claim to have explained the 
fall of the yers by pointing to the default presence of a certain sort of attractor, then we 
must also be able to explain why the default attractor vanished for a certain period of time 
in the first place. Requirement (ii) is even more delicate since it points to a stipulated 
asymmetry in the change of the overall dynamics: Why is loss of the �Menzerath attractor� 
the marked alternative vis-à-vis its (re-)establishment that Lehfeldt and Altmann, if im-
plicitly, dub a return to normality? 

 
To sum up: None of the mechanisms one might propose in order to explain temporary 
�absence� of the operation of Menzerath�s Law can be backed up by anything like an empir-
ical theory � the stipulated attractor remains but a façon de parler. 

For Old Russian texts after the fall of the yer vowels, Menzerath�s Law in its basic form 
can satisfactorily be fitted to the data. The authors conclude (Lehfeldt, Altmann 2002, 338): 
�In other words, the fall of the reduced vowels was directed at the elimination of these 
obstacles [for the law, PM].� Here we see an example of a post hoc, ergo propter hoc fallacy, 
that is, of an illicit causal-final reinterpretation of a merely temporal sequence of events: After 
the yers fell, Menzerath�s curve could be fitted again, therefore, or so the argument runs, the 
fall of the yers caused or was directed at reenacting Menzerath�s Law. We have no sound 
reason to take such a conclusion for granted since it is based on an unwarranted reification of 
the stipulated reason for the ceteris paribus regularity: The claim that �Menzerath�s Law 
holds ceteris paribus� effectively gets rephrased as follows: �Menzerath�s Law is a kind of 
�telos�, a �driving force� that is somehow determined to change the dynamic structure of a 
language system in the course of time.� 

Our result, then, is somewhat negative. No cogent explanation of the language change in 
question has been offered. Note that even if we had an acceptable scientific theory according 
to which Old Russian was forced to return to a Menzerath-compatible state, we would still 
stand in need of an explanation of the yer fall as such because the �goal� of reenabling Men-
zerath�s Law could have been achieved by a host of theoretically possible ways. Indeed, 
Lehfeldt and Altmann reproach other purported �explanations� of the yer fall for not providing 
an answer to their crucial question (2002, 328): �But why did these vowels [that is, these and 
not others, PM] change at all?� Of course, an answer to this question is part and parcel of the 
explicitly avowed main objective of the paper under discussion, viz. �to find an explanation 
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for the fall of the reduced vowels� (Lehfeldt, Altmann 2002, 330). The authors claim to 
actually have found such an explanation (2002, 342), although their formal descriptive 
apparatus (stating that Menzerath�s Law can be fitted to Old Russian data only after the yer 
fall) can not even in principle give an insight into the actual �mechanism� that effected the 
reestablishment of Menzerath�s Law � an insight that would, amongst other things, require a 
complex phonological treatment of the Old Russian language. 

The ontologizing strategy of positing attractors to explain ceteris paribus phenomena 
seems to me to be a special example of a common argumentative fallacy in QL work: A 
Poisson/optimization/� process can be used to model the phenomenon X, ergo there must be 
such a process, and the process is the searched-for explanans or mechanism; more generally: 
X shows a certain stochastic regularity R, ergo there must be an underlying causal story for X 
that directly implies R. Following Lees, we may say that this kind of reasoning instances an 
�as-if fallacy�. Lees, quoting an earlier paper by Quastler, acknowledges that certain statis-
tical properties of music and language are equal to those which could be obtained by 
stochastic processes � �but it is not claimed that words grow by chance accretion of syllables, 
or that Mozart�s musical line is the result of random collisions� (Lees 1959, 288).16 

A famous example already discussed in detail by B. Mandelbrot, R. Lees17, G. Herdan and 
many others is �Zipf�s Law�. In recent publications Wentian Li has argued anew that �Zipf�s 
law is not a deep law in natural language as one might first have thought� and that �Zipf�s law 
does not share the common ground with other scaling behaviors�, emerging instead from 
ultra-general stochastic premises that hold as well for randomly generated texts (Li 1992).18 In 
Mandelbrot�s and Li�s interpretation, Zipf�s Law simply says that natural language texts 
typically behave, from a stochastic point of view, as if they were the output of a random 
character source. Naturally, this does not mean that such texts are such an output. Once again, 
the search for a mechanism �behind� the stochastic regularity is determined to fail.19 
 
 
6. Conclusion: Theories and models in the �system-determined� sciences 
 
Difficulties in quantitative and stochastic modeling similar to those outlined above with 
respect to QL arise as well in other numerically oriented branches of science. Econometrics 
                                                 
16 Lees characterizes the epistemic gain from quantitative linguistic models of his time by pointing out that 
��the statistical behavior of words in a text, as specified by the explanatory model given, though it results from 
the operation of �known� micro-behavior (i.e. the application of detailed grammatical rules, sociological and 
psychological determinants of vocabulary, etc.), could also have resulted from the operation of the probability 
model� (Lees 1959, 287). 
17 Lees summarizes Mandelbrot�s famous mathematical discussion on Zipf�s Law, pointing out that the law 
�says merely that whatever the micro-behavior may be that determines our choice of words (what we like to talk 
about, the grammatical constraints of our language, etc.), it results in an essentially random placement of spaces� 
(Lees 1959, 287). 
18 Cf. Miller�s (in)famous remarks on Zipf�s Law in his �introduction� in Zipf�s Psycho-Biology of Language 
(Miller 1968): �Faced with this massive statistical regularity, you have two alternatives. Either you can assume 
that it reflects some universal property of human mind, or you can assume that it represents some necessary 
consequence of the laws of probabilities. Zipf chose the synthetic hypothesis and searched for a principle of least 
effort that would explain the apparent equilibrium between uniformity and diversity in our use of words. Most 
others who were subsequently attracted to the problems chose the analytic hypothesis and searched for a 
probabilistic explanation. Now, thirty years later, it seems clear that the others were right. Zipf�s curves are 
merely one way to express a necessary consequence of regarding a message source as a stochastic process.� 
19 Lees remarks: �The fact that natural language texts are fair approximations to such random sequences shows 
merely that linguistic constraints, stringent though they seem to be, still permit sufficient variety in a very long 
text to approach the ideally random distributions. We see then that the only thing about such frequency 
distributions which is of immediate interest to the linguist is precisely the departures of natural language texts 
from the ideal distributions� (Lees 1959, 285). 



Laws and theories in quantitative linguistics 77 

would seem to be a case in point. In a critique of probabilistic econometric modeling, R.-E. 
Kalman (1980, 1983) defends a methodological distinction between �natural� and �system-
determined� sciences. The natural sciences � again with the standard example of theoretical 
physics � deal with laws of nature in a strict sense that hold regardless of which system is 
actually considered and that form the backbone of a theory-driven approach to empirical 
phenomena. System-determined sciences such as economics and engineering, on the other 
hand, venture a data-driven approach to highly system-specific regularities. For this reason, 
their �laws� often have no validity beyond the specific sort of system to be described and may 
contain parameters that are neither universal constants nor liable to a general theoretical 
interpretation. This leads to a remarkable situation in econometrics where mathematically 
simple formulas with only weak theoretical motivation often turn out to be superior to 
sophisticated, theory based systems of differential equations when it comes to predictive 
capacity. 

It seems to me that the situation of QL is similar. While the models developed so far do 
possess statistical significance, theoretical underpinnings remain vague and weak. The 
methodic side of QL research work is close in spirit and in its formal aspects to the rough-and 
ready inductive generalizations of statistical modeling in the social and economic sciences, 
whereas its rhetoric is that of a super-general, if virtually non-existent, theory of complex, 
self-organizing systems. 

The �big question� that comes to mind here is whether a �third way� besides a traditional, 
qualitative understanding of the subject matter of linguistics and the inductive quantitative de-
scriptions of contemporary QL (the empirical side of which rests entirely on qualitative 
notions in a poorly understood way) is conceivable at all. Recent contributions to the theory 
of complex systems suggest that qualitative-only and even functional treatments of systems 
may, in many scientific contexts, be both inevitable and explanatorily fruitful. J. Cohen and I. 
Stewart (1994) outline a theory of complex phenomena arising or �emerging� from non-linear 
causal interaction between two or more systems whose internal dynamics differ so radically 
from one another that none of the attractors of the individual �phase spaces� of these systems 
coincides with any attractor of the combined phase space arising from the interaction. In such 
cases, the authors argue, the resulting dynamics (which cannot be described from the point of 
view of the contributing systems) will develop according to simple patterns that are, in a well-
defined sense, independent of the complex internal details of each of the involved systems 
and the specific boundary conditions of the interactions as such. The authors coin the term 
complicity for this kind of interaction. Complicity-driven dynamics can, in many cases, be 
subjected to a merely qualitative or functional explanation; in other words, the dynamics of 
the combined system is not reducible to aspects of the dynamics of the systems that form its 
parts. 

To take a favourite example of the authors�, the extremely complex evolutionary inter-
action between the phase space of the internal microbiological and genetic apparatus of the 
higher living beings on the one hand and the behavioural phase space of the macrophysical 
interactions of these living beings with each other and with their natural environment has, 
over and over again, led to the development of wings the anatomy and historical morphology 
of which differ radically from species to species. No look at the intractable details of the 
evolutionary development of wings in different flying species will give us a deeper 
explanation of the overall fact that flying is reinvented by evolution again and again. Only a 
coarse-grained, functionally minded explanatory strategy of the �capability of flying enhances 
overall survival chances� will do here. No reductionism is available.20 Linguistics, whether 
�qualitative� or �quantitative�, possibly faces similar problems.21 
                                                 
20 Cf. Lees (1959, 298): �Reduction of sentences to observational vocabulary and reduction of theories to the 
vocabulary of physics are usually considered to be independent; indeed, most logical empiricists have by now 
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Two different ways out of the science-theoretical dilemma of QL and toward a �third 
way� seem to be conceivable. On the one hand, some of the well-attested stochastic regular-
ities that have been found to date might turn out to be quantitative analogues of the de-
scriptive, non-reductive patterns of complicity as assumed by Cohen and Stewart. In this case, 
the role of QL laws in future linguistics would be a more mundane, modest one than hitherto 
assumed; qualitative and quantitative research would simply coexist and be directed at 
different goals and purposes. QL would not be able to find the deep, hidden mechanisms by 
which the evolution of linguistic communicative processes proceeds. My exemplary remarks 
on Zipf�s Law point in this direction. 

On the other hand, if a mathematical treatment of the way qualitative linguistic entities 
such as words, syllables and constituent structures emerge evolutionarily is more than a self-
contradictory hope, then it is precisely this mathematics of the �complicitary� qualitative 
concepts we linguists live by that would have to lay the foundations for a mature Quantitative 
Linguistics. 

The preceding remarks are not meant to be an all-or-none deconstruction of the remark-
able achievements of QL. Rather, the main thrust of the criticism advanced here consists in 
noting that the most difficult problems of the discipline are still ahead, waiting to be solved � 
something most QL adherents will be willing to agree to. The positivist outlook on science 
that is still fashionable in QL work and the over-estimation of the paradigm of fundamental 
physics might be an obstacle to solving the most pressing problem, viz. that of bridging the 
gap between traditional and probabilistic-quantitative modes of thought in linguistics. The 
favorite quotation of QL, Bunge�s �every thing abides by laws� (1977, 17) is indicative of a 
fallacy linguists have perhaps fallen prey to just too easily. While Bunge�s dictum is devoid of 
sense if not taken in a down-to-earth, normative reading (�if you want to do science, try to 
find regularities wherever you can�), it suggests that simple laws of the sort found in certain 
natural sciences have to underlie each and every phenomenon of the observable world in such 
a way that the phenomena in question become mathematically derivable, if perhaps only �in 
principle�, from a small set of simple equations.22 To get rid of this admittedly enchanting 
idea might be a difficult, but necessary step of emancipation from an obsolete paradigm of 
scientific research. 
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A Testimonial to Zipf's Principle of Least Effort 
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Abstract. Evidence for the truth in George Kingsley Zipf’s Principle of Least Effort can be found in the 
deep attraction we have for anything promising us an easier route. The selling point of virtually all 
technology is the promise of new means to ease. But, beneath the vast glittering surface in the sea of hype 
runs a dissipative current.  With so many things capitalizing on our aversion to effort, individually and 
collectively, as a species we're losing it because we're not using it. Seeding that awareness is the first step 
in reversing the flow. 
 
Keywords: G.K. Zipf, Zipf's Law, The Principle of Least Effort, effort, technology, dissipative 

structure, exergy, entropy, the 2nd Law 
 
 

The Principle of Least Effort 
 

     "I don't think necessity is the mother of invention - invention, in my opinion,  
   arises directly from idleness, possibly also from laziness. To save oneself trouble." 
                   
                                                                                                           Agatha Christie 

 
Some years ago, I was reading a slim volume called Entropy and Art: An Essay on Disorder and 
Order by the psychologist, Rudolph Arnheim. In his discussion of "psychic economy," Arnheim 
casually mentioned a reference to Human Behavior and the Principle of Least Effort by the late 
Harvard linguist/psychologist, George Kingsley Zipf. Intrigued by the title, I set out to find it. 
The search proved daunting. At one time, the 42nd Street Research Library in New York had the 
book, but somebody had made off with it. Finally, after a lot of effort, I managed to find a copy 
in the unlikely stacks of Princeton University's Population Research Library, then located in the 
basement of what looked like a fraternity house with a cannon out front.  

I became a regular at the library, reading a chapter or two each bi-weekly visit from my 
home on Long Island (a big trip) in a carrel next to one of the few windows. The library was 
always quiet, frequented, it seemed to me, not very frequently. With too many of us on the planet 
consuming too much too fast, the library, a major center for population research, should have 
been bustling. Instead, the librarians were always happy to see a returning customer. The carrel 
was always free, eagerly waiting just for me, so it seemed. 

                                                 
1 Address correspondence to: Jeff Robbins, P.O. Box 335, Long Beach, NY 11561 USA.  
E-mail: jhrobbins@erols.com 
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To say that Zipf's treatise was dense is an understatement. It was chock full of case studies 
traversing an awesome diversity of fields - linguistics, psychology, economics, geography, 
international relations, you name it - with tables, graphs, and equations galore. In a time before 
computers, Zipf must have put in an enormous effort to prove to the world that we humans orient 
our lives, whether we realize it or not, around the prospect of minimizing effort.  
 Zipf's argument was that we seek out paths to goals that promise the least effort as an energy 
preserving tactic.2 Effort burns energy. If you don’t know when or where your next meal would arrive, 
achieving goals such as securing that next meal with the greatest “efficiency,” i.e., the least expenditure of 
energy, could spell the difference between life and death. It made excellent survival sense and is in fact a 
tactic we share with most, if not all, of our animal cousins. Watch a cat cross the street when she spies no 
dogs, cars, or humans. She takes her good time. Animals - especially predators - are lazy, and for good 
reason. They don’t waste what’s precious. 
 Zipf based his contention on The Principle of Least Action in physics. By minimizing "action” – the 
difference between kinetic and potential energy averaged over time – you could predict the behavior of all 
kinds of interesting things. Substitute effort for action and it’s ditto for human behavior. Mind you, it’s not 
that we can’t or won’t run marathons or climb Mount Everest. The key words, when it comes to decisions 
about effort, are “average” and “expectation.” Just as the big cats burn up the ground securing their meals, 
then sleep away their bulging bellies, so we too can exert huge efforts in bursts. It’s just that with us it’s a 
lot more complicated than sprinting after a zebra. We work like crazy as twenty somethings with the 
prospect of being able to retire a Silicon Valley millionaire at age thirty and then do what we want (it 
doesn't always work out). 
 
 
The Draw of Ease 
 

"Lest people feel smug about their diligence, evolutionary biologists are discovering that animal 
inactivity is almost never born of aimless indolence, but instead serves a broad variety of 
purposes. Some animals sit around to conserve precious calories, others to improve digestion of 
the calories they have consumed. Some do it to stay cool, others to keep warm. Predators and 
prey alike are best camouflaged when they are not fidgeting or fussing. Some creatures linger 
quietly in their territory to guard it, and others stay home to avoid being cannibalized by their 
neighbors. 

"So while there may not be a specific gene for laziness, there is always a good excuse.”  
 
         Natalie Angier (1991) 
 
The attraction we have for virtually anything that promises to make life easier is so natural, we 
don't give it a second thought. If you say something "is easier," you need say no more. Easy is 
good. Easier is better. Easiest is best. If you say it's "simple" or "simpler," if it's "fast" or "faster," 
if it "saves time" that's great, we want it. We love convenience. We like to be comfortable. If one 
company produces widgets more efficiently than another, we like that company, we'll buy the 
stock. If a review says a book, a movie, a show, is exciting, we want to read it, watch it, go to it.  

 Smack at the beginning of the 1999 beach season, an ad appeared in The New York Times 
for what was then a new book by crime writer Andrew Klavan. Publisher's Weekly declared 
Hunting Down Amanda "Immensely Exciting…Klavan Bows Down To No One For Whiplash 

                                                 
2 Actually since energy, as the First Law of Thermodynamics tells us, is always conserved, what is being preserved is 
“exergy,” the usable, potent, transformable, part of energy.  
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Plotting and Page Whirling Suspense…"3 Why are we drawn to immensely exciting / whiplash 
plotting / page whirling suspense? And the answer is the promise of an easy read; just something 
to pass the time while getting a tan, no (mental) assembly required.  

But, if Zipf was onto something, why don't we hear more about him and his proposal? Why, 
isn't something as powerful and universal as the urge to minimize effort universally recognized? 
Why isn't it taught from grade school on up? With the vast mental and capital resources of the 
global scientific empire, one would expect to find a well funded glut of Departments of Least 
Effort with hoards of postdocs, busy as beavers, delving deep into the history, evolution, and 
consequences of sloth (actually, we may need a new metaphor; according to Ms. Angier, 
scientists have found the beaver not all that busy after all). Alas, there is no such department 
anywhere to be found. Maybe a name change to something like Department of Energy Efficiency 
Studies might work. 

Why don't we see what Zipf saw? The answer is that the urge to minimize effort is so deeply 
ingrained, it's like air; we take it for granted; it fails to enter conscious thought. Subconsciously 
we choose the path that appears to require less effort if it gets us where we want to go, all other 
things being equal. We have to go out of our way not to. Case-in-point: In New York City’s Penn 
Station there are two levels. The lower level is for the Long Island Railroad and the upper level 
for Amtrak and New Jersey Transit trains. To go from the lower to the upper level you either 
have to climb eighteen steps or take the escalator. One rush-hour morning, it struck me that even 
though the number of steps wasn’t that great, almost all the commuters going from the lower to 
the upper level took the escalator.  

The following week, I came back with a camera and took pictures. What I found was that, 
though few of them were carrying bags, commuters would rather wait on line - even a long line - 
to take the escalator rather than climb those eighteen steps. One would think that they would 
climb up the short flight knowing that getting the heart rate up with a little stair climbing would 
be good for them. They've been sitting for an hour or more on a train, or will, or are on their way 
to sit for seven or eight hours at a desk typing, clicking, staring at a VDT. But, once again, one 
would think wrong. Sure, there was the occasional stair climber. Maybe she was in a rush; maybe 
she thought about the exercise; maybe she did a quick estimate and decided waiting on line took 
more effort than climbing the stairs.4  
 
 
Shades of Effort 
 
Infrared film in a camera zeroes in on the heat signatures of animals, people, buildings, cities. By 
filtering out all but infrared "heat" wavelengths of light, you can see things that would be hard or 
even impossible to see with ordinary film. An effort filter, fitted over the camera of experience, 
may reveal signatures and patterns hard or impossible to see in all its full blown complexity. 
Everybody choosing to take the escalator has a different bag of motives. But, cut out everything 
but effort and the sheer difference in numbers gravitating to the free ride escalator rather than the 
effort demanding stairs is telling us something. 
 
                                                 
3 New York Times, 24 June 1999, E26. 
4 Over a number of months, in half-hour intervals, at different times of the day, I actually counted the numbers 
taking the escalator vs the stairs. Eliminating all  those lugging pullbags, or people with obvious disabilities, my tally 
so far is 10516 taking the escalator and 1687 climbing the stairs, a ratio of 6.3 to 1.  
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Shortcuts 
 
Putting on our effort shades, we see that in our daily lives there are countless cases-in-point, little 
things we pay no attention to because we have too many more important things on our minds to 
notice. We come to a corner and there's a vacant lot. Heading at a perfect 45 degree angle is a 
short cut through the grass. Like taking the escalator, cutting diagonally across the lot, makes 
sense because it is the path of least effort. Unlike the escalator, however, which may take longer 
than climbing the stairs, it is also the path of least time. It makes sense to cut across the lot 
unless, of course, you're out for a run.  

Do joggers cut diagonally across a lot? From my own experience jogging, I definitely feel 
the urge to take the shortcut and get done with my run sooner. Why? Because there's always more 
or less discomfort when you're running and your body wants the pain to end. Something else to 
notice; just as we like the free rides of escalators - I do - we fail to see that the ride really isn't 
free. The toll is just hidden from us since we don't explicitly pay for the energy needed to carry us 
up and down. It's a little thing, but the escalator runs on electrical energy that, in all likelihood, is 
generated by consuming a fossil fuel that pumps out an infinitesimally added increment of the 
global warming, greenhouse gas, CO2. Along the diagonal path that saves us time and effort, the 
grass is gone, trampled underfoot. 
 

"Rollaboard" 
 
In my investigation of escalator vs stairs in Penn Station, I excluded everyone taking the escalator 
with a pullbag from the tally because it seemed unfair to expect people to bump them up the 
stairs unless they absolutely had to. According to a USA TODAY cover story by Bruce Horovitz, 
the luggage industry calls pullbags "rollerboards," a takeoff on the original trademarked name 
"Rollaboard" coined by its inventor, former Northwest Airlines pilot, now semi-retired multi-
millionaire, Robert Plath (Horovitz, 2003). The enormous, industry saving, success story of 
rollerboard luggage should be evidence enough for the truth in Zipf's proposition.  

Back in 1988, when no one knew from rollerboards, Plath felt a compelling need for some 
kind of compact carry-on bag with wheels to make his pilot's life easier. With nothing on the 
market at the time, he came up with a stand-up carry-on bag with an extendible handle and 
wheels and called it the Rollaboard. The name matched perfectly its intended application. It took 
off at a pace that stunned its inventor. But why? And the answer is it brilliantly appeals to the 
urge to minimize efforts in virtually all - but not all - respects. In fact, aside from the occasional 
aisle seat passenger whose elbow, knee or head gets whacked and the delays in takeoff as 
passenger move around the cabin trying to find an overhead compartment with some space to jam 
them in, the only significant complaint Horovitz notes about these bags is the amount of effort 
needed to stuff everything into the carry-on 22 inch version and then live with everything they 
haven't taken along. "'These carry-on bags,' said one traveller who owns one, but always checks it 
in, 'have grown in proportion to the laziness of the average traveller.'" 

The rollerboard, Rollaboard, pullbag, whatever you want to call it, began racking up sales as 
soon as travellers spied them because they're clearly easier than what they're replacing. It's easier 
to roll a bag than carry it either in hand or with a strap over your shoulder. Apart from the risk 
that your bag will end up in Chicago and you in LA, travellers don't like to wait for checked 
baggage. Waiting is effort, effort that almost everyone considers a waste of time. Before the 
rollerboard, travellers checked bags because they had to. Many checked duffel bags that could fit 
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into overhead bins because they didn't want to lug them around the airport. They took a lot of 
things with them in big suitcases because they knew they were checking them in. They took a lot 
of things along because it was easier than trying to spend time thinking about what they really did 
or did not need; easier than having to make do at their destination. But now, with the 22 inch 
rollerboard that can fit into overhead compartments that airlines, as Horovitz reports, spent $50 
million to accommodate, the effort of having to wait for checked luggage coupled to the risk of 
loss has swamped the added effort of having to think harder about what you can do without and 
then make do. 

There seem to be few drawbacks to effort relieving rollerboards. Some of the most prominent 
– other people take them when you do check-in the bigger ones because they're all pretty much 
the same shape and black – are being corrected. Yes, they're noisy and the wheels squeak and 
break. The only other drawback, which only a crazy exercise fanatic might see as such, is the loss 
of strength accompanying the disappearance of the need to carry your luggage. Carrying bags, 
however unpleasantly you look at it, requires muscle and builds muscle. It's a little thing, but 
think about how much muscle strength has been lost to the nation now that most travellers pull 
rather than lug? Since waiting is an effort, despite the bad press, it builds a certain kind of 
muscle. Call it the patience muscle. Add patience to the muscle that's been lost thanks to the 
Rollaboard.  

With almost everything else also relieving us of the need to contract some muscle – even the 
teeny muscle required to roll down a car window, or actually get out of your car and walk into a 
restaurant, or get off your butt to change channels, or endure that bit of unpleasant cold on frosty 
winter mornings when once upon a time you didn't have a remote start - what is happening to us? 
 

Pandering to The Principle / Selling The Goods 

"In 1970, Americans spent about $6 billion on fast food; in 2000, they spent more than $110 
billion. Americans now spend more money on fast food than on higher education, personal 
computers, computer software, or new cars. They spend more on fast food than on movies, 
books, magazines, newspapers, videos, and recorded music — combined." 
 
       Fast Food Nation (Schlosser, 2001:3) 

 
In the Letters section of same issue of USA TODAY, Alison Kretser, M.D. from Washington, 
D.C., commented on an article claiming that legislators are trying "to limit soft drinks, sugary 
snacks at schools" in an effort to combat the growing obesity in the nation's children. Although 
they say they are trying to encourage a more active lifestyle as well as encourage the eating of 
healthier food, the state bills mentioned in the article are mainly about bans and restrictions on 
junk food and drink. But these bans and restrictions don't give parents or schools the needed 
funds and resources to help them nourish better eating and exercise habits. Says Dr. Kretser, 
"Numerous studies have shown that obesity is related to any number of lifestyle decisions and 
habits. In fact, research shows that our children's level of activity has dropped dramatically while 
calorie consumption has remained roughly the same since the late 1960s."5 She says that pointing 
fingers or assigning blame to any particular food or beverage is not the answer. A more balanced 
approach is called for. Towards that end she proposes:  
                                                 
5 Alison Kretser, M.D., USA TODAY, 19 February, 2003, Letters, 11A. 
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•  "Providing sound information on nutrition to parents, students and teachers. 
•  "Encouraging more physical education and recreational opportunities. 
•  "Funding the research we need to determine ways to encourage healthy lifestyle choices."6 
 
This is all very good advice and Dr. Kretser is not at all alone in her recommendations. But 
consider what she is proposing in the context of everything in our individual and social 
environments that panders endlessly and successfully to minimizing or eliminating the kinds of 
efforts implied in her proposals. Reasonable and balanced as they seem, in reality they go entirely 
against the steamroller of consumption that keeps a really big chunk of our economy rolling.  

Sound information on nutrition; eat healthy; great. But what about the $110 billion fast food 
industry, an industry that sells itself, hook, line, and sinker, on eliminating both sides of the effort 
equation. They make it as easy as possible to get food. They make it as easy as possible to eat 
food by engineering and standardizing the taste so that it hits the taste buds hard and consistently. 
The fast food industry, despite what it may say to kill any lawsuits claiming fast food is making 
kids obese, does not want its customers to think about what they are consuming (if they did, 
there's a good chance they wouldn't be choosing fast food). 

Get exercise. Expand physical education and recreational opportunities. Sounds wonderful 
and it is. But now look at the massive industries that depend on kids staying home, playing video 
games, surfing the internet, and above all else watching television so that they can be sure to 
catch the ads on sugar loaded drinks and cereals and, let's not forget, fast food. 

The rollerboard is smart, it makes perfect sense, it’s much easier than what it replaces. But so 
is everything else. 
 
 
Make it Easy, Make it Simple, and Make it Fast 
 

       "Curbside Takeaway / No Rules. Just Right to your Car 
       "Call up. Pull up. We'll bring the food straight to your car." 

 
   Ad for Outback Steakhouse 

 
The attraction of ease is as universal as those who want to capitalize on it. At least one of the 
reasons why nobody seems to be talking about the powerful attraction we have to anything 
promising less work is that the awareness is not wanted. Gaining an edge in sales too often hinges 
on making it seem that your own product is easier than your competitors. If consumers were to 
start thinking about just how much the promise of easy is exploited; if they began mulling over 
what too much ease, too much indulged, might be doing to them, to their kids, to their 
community, to other species, or to the entire planet, it might get harder to sell them stuff.  
 One of the easiest - there you go - ways to get an idea of just how automatic the expected response to 
simplicity, ease, and speed, is to do an online Google search on the words, "Made Simple". Here's a 
sampling from a search done in December 2002 that came up with 5,500,000 sites matching "Made 
Simple". 
 

Simple Machines Made Simpler. Hematopathologic Phenotypes Made Mockingly Simple. Success Made 
Simple. Bankruptcy Made Simple. Credit Repair Made Simple. Extraordinary Meetings Made Exceedingly 
Simple. Boat Cosmetics Made Simple. Wildebeest Migration- 'The Migration Made Simple.' Filing Made 

                                                 
6 Ibid. 
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Simple. Mall Shopping Made Simple. Marxism Made Simple. The Great Outdoors Made Simple. Tragedy 
Made Simple. Celsius and Fahrenheit Conversions Made Simple. Privacy Made Simple For High-Tech 
Minds. Black Holes Made Simple. Complex Made Simple… 

 
Search on "Made Easy" and Google responds with 5,970,000 sites. A sampling: 
 

Embryos Made Easy. Hernias Made Easy. Southern Living Microwave Cooking Made Easy. Orthopedics 
for Poultry Made Easy for Beginners. Multiplication Made Easy. Attention Deficit Disorders Made Easy. 
Tarantulas Made Easy. Arabic made Easy. Computers Made Easy For Senior Citizens. Parking Fines 
Made Easy. Meditation Made Easy. Hacking Hotmail Made Easy. Feng Shui Made Easy to Improve Your 
Luck! Work Out Planning Made Easy. Transvestite Transformation - Make-Up Made Easy. Doing Good 
Made Easy. Move-In Made Easy. Complex Numbers Made Easy. The Rules Made Easy AKA Rules For 
Idiots Video. Object Encapsulation Made Easy. Job Search Made Easy. Baltimore Made Easy. Shopping 
Made Easy. Weddings Made Easy, Computer Software. Chrysanthemum Breeding Made Easy. Visual 
Basic.Net Tracing, Logging and Threading Made Easy. Finding a Niche Made Easy. Bangs Made Easy. 
Men Made Easy E book. Opium Made Easy. Muscles Made Easy. Menopause Made Easy. Life Made 
Easy. 

 
Not only do we want things to be simple and easy we want them to be fast. What was it the ad 
said? Ah, yes, "We hate to wait." Put "fast" in the Google box and the engine responds in 0.05 
seconds - a response time that is truly amazing - with "about" 35,200,000 sites all of which have 
"fast" somewhere embedded. "Welcome to Fast Search and Transfer" says the header of one site. 
"FAST products, FAST Technology, FAST Success Stories." The dust jacket on James Gleich's 
1999 book, Faster: The Acceleration of Just About Everything, says: "If one quality defines our 
modern, technocratic age, it is acceleration. We are making haste. Our computers, our movies, 
our sex lives, our prayers – they all run faster now than ever before." In ever greater numbers we 
have become the Type A man and woman in a rush to do more and more in less and less time. 
"We have become a quick-reflexed, multitasking, channel-flipping, fast-forwarding species." In 
ever increasing numbers we push the DOOR CLOSE elevator button.  

It takes less effort to wait less than to wait longer. Having to deal with complexity is 
uncomfortable. Having to do something that's hard means having to endure feelings that you'd 
rather be over. Waiting is pain. Speed is the relief.  
 
 
"That's Entertainment" 
 

"For all practical purposes, the U.S. today is a 24-hour, TV entertainment society. Everything in 
contemporary America is an entertainment, from sporting event to big business, politics, certainly 
religion, and even academia. If it isn't fun, cute, or packaged in a ten-second sound bite, then forget it. 
If it can't be presented with a smiling, cheerful, sexy face, then it ain't worth attending to. We're all 
spectators in a grand entertainment society looking up at the few superstars on the stage who not only 
perform but stand out enough to be labeled heros of our age. In critic Richard Schickel's biting 
observation, in contemporary America one is either a celebrity or one is nothing." 

      
             The Unreality Industry (Mitroff and Bennis, 1989: 8-9) 

 
Like the word “easy,” when someone says “entertainment” we like it, no qualifiers required. 
Generally we have a limited set of things in mind when we think of entertainment. Movies, 
Broadway, On and Off, circus, best sellers, magazines, tabloids, TV sex, TV violence, reality TV, 
sports on TV, wrestling on TV, car chases on TV, video games, pop music, music videos, con-
certs. We don’t consider escalators, shortcuts, throw-away shavers, one-use cameras, the stock 
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market, state lotteries, guns, bombs, automobiles, air conditioners, motorized lawn mowers, 
tractors, giant cranes, agriculture, assembly lines, genetically engineered potatoes, fast food, 
sugar loaded colas, cigarettes, prescription drugs, ski lifts, dictionaries, Google, restaurants, 
packaged steaks, airplanes, trains, boats, buses, remote controls, software, microwave ovens, 
manufacturing robots, motorized golf carts, schools, calculators, textbooks, chauffeurs, butlers, 
maids, waiters, chefs, health clubs, nail salons, personal trainers, free weights, treadmills, jewel-
ry, mink coats, actors, celebrities, coaches, teachers, librarians, doctors, lawyers, politicians, and 
so on, “entertainment.”  

But put on those effort shades and you begin to see that, without exception, these seemingly 
unconnected or marginally connected entities share one thing in common; they all reduce, 
minimize, or completely eliminate effort. It's true that many of these "entertainers" make some 
things easier only to make other things harder. Free weights make building muscle easier by 
offering resistance. From tabloids to texts on Theoretical Physics, the spectrum of demand varies 
from one extreme to the other. But regardless of where they fall on the scale of effort, all of them 
succeed or fail on the promise of something or someone doing some, most, or all of the work for 
us. And that's entertainment.  

Consider this: What could air conditioning and television possibly share in common? 
Answer: both eliminate effort.  

Air conditioning eliminates the effort, and it is an effort, needed to deal with heat with our 
own substance. For the millions of years, humans and proto-humans have been around, somehow 
we managed to live with heat and humidity. Even today, outside of the developed industrialized 
nations, people still have to go with the flow of hot and humid. They adapt; take siestas; build 
their homes with lots of free flowing air under big shade trees. But, now, especially in America, 
arguably the most air conditioning dependent nation in the world, technology does the work of 
cooling the environment for us. Air conditioning makes living with hot and sticky easy. Just turn 
the AC up.  

Television eliminates the need to exert effort period. Is there anything easier than plopping 
on your couch and surfing with your remote to see what will most amuse you for the moment? As 
Robert Kubey and Mihalyi Csikszentmihalyi (1990: 81) reported in their book, Television and the 
Quality of Life, there is virtually no other activity that requires lower levels of concentration, 
challenge, and skill than watching television. Reading? It takes more work. Thinking? Not even 
in the same ballpark. Writing? Much more work. The secret of television's overwhelming success 
is its ability to exploit the Principle of Least Effort. But, the answer is yes, there is something 
easier than channel surfing for what's on: It’s technology that does the surfing and the recording 
for you, because it knows what you like, so that you can watch what you want when you want 
and skip the ads as a plus. 

Then again, what could a tabloid possibly have in common with a text on Theoretical 
Physics? Tabloids exploit everything that hooks eyeballs; celebrity scandals, extraterrestrial 
abductions, angels to watch over you, eat anything you want and lose 40 pounds in thirty minutes 
diets, 536 ways to have great sex, you name it. With a hard physics text, it's just the opposite. 
You have to make a major effort just to fill in the blanks between equations. The only thing you 
can count on when you see "it follows that," or "a short calculation reveals" is that it does not 
[immediately] follow that and the calculation will not be short. Nonetheless, the mystery of how 
one step leads to the next makes it easier for the student to make the effort to get a leg up on 
theoretical physics. Like free weights, a good teacher motivates her students to put in the effort 
and in so doing makes that effort easier.  
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The Web 
 

"'Tell me about the role of Elizabethan theatre in English literature. Why is it called 
"Elizabethan"? Please send me all the information right away, as the paper is due 
tomorrow.'" 
 
        Student query to Usenet group (Sweetland, 2001) 
 

The Web is a remarkable outcome of technology. It allows us to access information, "to find out 
about," to connect to a vast, ceaselessly changing reservoir of links as never before in history. 
Powerful search engines like Google can sift through billions of Web sites in a fraction of a 
second. With so much power at our fingertips, entirely new possibilities for research have come 
online. But mount the effort filter and what you begin to see is that the foundation on which the 
entire Web edifice is built is none other than the profoundly simple desire to minimize effort.  

As with all technology worth its salt, the Web gives us new freedoms and choices previously 
unavailable. We can choose to do a Web search or engage in traditional offline research or both. 
Now we have the choice. Before we did not. This is a plus. A big one. We can now devote our 
efforts to new and deeper possibilities. The choice is ours. But is it? 

For some the answer is absolutely yes. We can take the steps if we want to. All it takes is an 
idea; "a little exercise might do me good." We can choose the convenience and hard hitting taste 
of supersized fast food and sugar drinks. But, we can choose healthier fare in healthier amounts. 
It's up to us. We can let our powerful graphing calculator do most, if not all, of the calculations 
and graphing and devote our energies to the higher math it still cannot do. The technology gives 
us the choice and it's up to us to make good use. But is it? 

In a recent (least effort) Google search on the key words "The Principle of Least Effort," I 
came across an interesting Library Link. Written by James H. Sweetland, its title is "The Need for 
Guides, Coaches, and Teachers in the Self-Service Information Environment." Speaking to his 
fellow librarians, what Sweetland is lamenting is an unintended consequence of their exertions to 
make "ever more 'user friendly systems'." He says that the end result of the ease of doing online 
research is that students are taking the path of least effort to an extreme and the consequences are 
spilling over adversely in the quality and depth of their work.  

Says Sweetland, "[There is] a growing body of research that most students use extremely 
simplistic search strategies in electronic sources, notably the typing of a string of the most 
obvious terms into a search engine." And if the first strategy doesn't work, they just give up 
without seeking any help. Complaints from Usenet groups and Web sites seem to point to student 
queries being nothing more than querying the site. The intended positive use of the technology is 
not being realized because it turns into a substitute for personal effort rather than a liberator 
allowing effort to be devoted more profitably.  
 
 
Across the Board is What's Wrong 
 
Effort is what puts order in our minds and bodies. Effort is what puts order in the world. Effort is 
what counters the universal tendency of things to fall apart, for energy to spread out, to flow 
downhill like a meandering river from useful to useless. But exerting effort consumes food 
energy. In a world of scarcity, efficient use of energy is no luxury. So it is that we have this deep 
seated urge, a survival instinct, that is delighted when something, anything promises us a more 
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energy efficient route to whatever it is we want to accomplish. We're universally drawn to the 
promise of minimizing the work involved. Always there to remind us that we're burning up 
energy when we apply effort is pain. If it were not so, we would be cavalier about effort, 
consuming food energy without knowing it. Since we don't like pain, when a piece of technology 
comes along that alleviates effort we equate that with the relief of pain and that's good. The 
escalator saves us the effort of walking up steps. It is more pleasant to get that seemingly free 
ride, however short, than to endure the discomfort, however brief and mild, of climbing steps. For 
every person who, for whatever reason, chooses to climb up 18 steps, between six and seven ride 
the escalator. The escalator is successful. Its creators may not have heard of George Kingsley 
Zipf, but they would understand very well what he was driving at. They understood The Principle 
of Least Effort and acted on it. 

But smart, efficient, and profitable as it seems to provide products and services that make life 
easier, there is a problem. The problem is not one or two or ten or even a hundred things making 
life easier. It is across-the-board everything.  
 
 
Zipf: A Different View 
 
The name of George Kingsley Zipf, if it is known at all, is linked to the remarkably diverse 
collection of phenomena gathered under the umbrella of Zipf's Law.7 While few doubt the 
validity of Zipf's Law - especially in its more refined incarnations - when experimental results 
can be gathered and ranked, the connection of the law to the Principle of Least Effort remains, to 
this day, smoking with controversy. Rather than add more coals to the fire, my purpose here has 
been to add weight to Zipf's contention that people, individually and collectively, strive to 
minimize effort8 by following a different route; one that connects the Principle of Least Effort to 
our growing dependency on the power of technology. 

It bears repeating that we fail to notice the linking of virtually all technology, in its design, 
implementation, marketing and use, to the urge to find an easier route because it's just so obvious 
that it's below the level where conscious thought can give it a look. Unfortunately, we can no 
longer afford not to look.  

Whereas the instinct to latch onto anything promising us a more efficient solution once - and 
for millions of years - made excellent survival sense, today it is an instinct that is out-of-touch 
with our technology transformed world. Fat is tasty because, in a natural world of scarcity, stored 
fat could be a life saver. The good taste reminds us of fat's survival value. Today, when food is as 
hard to get as your local drive-up window, or a click of your mouse, it still tastes good. Once 
more: tasty fat is easy to eat. Tasty food is easy to get. In America, at least, never has it been 
harder to burn up the calories in what's easy to eat and easy to get.  

When everything conceivable sells itself on the promise of eliminating some kind of effort, 
and effort is what we need to create and maintain order in our bodies and minds, entropy, the 
measure of energy's powerlessness, fills the vacuum. 

As technology systematically encroaches on the territory of human effort, rendering us more 
and more dependent on its power to keep us going, in effect, what is happening is that order, and 

                                                 
7 In its most simple formulation, "Zipf's Law is a relation between the frequency of occurrence of an event and its 
rank when the events are ranked with respect to the frequency of occurrence (the most frequent one first)." 
Frequency multiplied by rank equals a constant  ( Rousseau, 2002). 
8 Zipf defined effort as the "least average rate of probable work," (Zipf, 1949: 6) 
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the power that order confers, is being transferred out of people and human social structures and 
into the order of technics. When we, the consumer and user, buy into technology precisely 
because of its promise to make life easier, as the power in the technology goes up the power in 
the people goes down. Of course, this is the opposite of we’re all being told.  

The way it's supposed to work is that we're in a win-win situation: as the power in what we 
use rises ever upward on the stepping stones of latest versions minus one, ipso facto the power in 
us goes up. But just because we double click a mouse and transform the world, doesn't mean that 
the power of transformation lies somewhere within us. The power is in the technology. All we 
did was double click a mouse. The transfer of power from the technics to us is an illusion, one 
that only becomes apparent when, for whatever reason, the power, like a lost mobile phone, is 
gone. 
 
 
Is Technology a Dissipative Structure Feeding on the Draw of Sloth? 

 
"…even when a person is comparatively at rest, there is still a continual movement  
of matter-energy into his system, through his system, and out of his system…" 
 
                G.K. Zipf (1949: 1) 
 

The 2nd Law of Thermodynamics equates the passage of time with the increase in universal 
entropy. Overall, entropy never ever goes down. But this ironclad dictum does not prevent 
entropy from going down locally. If it did we would not be here. Life would never have come 
about. Reducing entropy in a particular local system (a bounded collection of matter and energy 
in flux like a cell or a person) means that the energy in that system has greater potential for useful 
transformation. It has more exergy, the measure of energy’s power, much like a weight that has 
been lifted in a gravitational field and can do useful work when it falls back down. 

Even simple physical and chemical systems, open to the flow of matter and energy, manifest 
the tendency to lower entropy locally by spontaneously self-organizing. A case in point can be 
found in the appearance of Bénard convection cells in a thin layer of liquid contained between 
two plates being heated from below. Cell formation represents the spectacular, instantaneous, 
coordination of in excess of 1022 molecules when a critical threshold of temperature difference 
between the plates is reached. Another example is the BZ (Belosov-Zhabotinski) reaction 
producing an oscillating chemical clock - yellow, colorless, yellow, colorless... ( Nicholas and 
Prigogine, 1989: 6-28). Spontaneous self-organization occurs in systems that are being 
maintained far from equilibrium as is the case when the critical temperature threshold is reached 
and Bénard cells form. The Nobel Laureate physical chemist, Ilya Prigogine, called these self-
organizing systems "dissipative structures."  

A dissipative structure concentrates order (lowers entropy) in itself by shipping off entropy 
into its environment. The astonishing self-organization of the Bénard cell can only take place 
because its high order permits a radical increase in the heat flowing between the plates. The 
stepped up heat flow is produced by burning fuel at a much higher rate. The escalated pace of 
burning fuel bumps up the rate of universal entropy production and this is what allows entropy to 
go down locally. Even though entropy goes down in the Bénard cell, when you take into account 
both the high order system and its environment, overall entropy goes up. The 2nd Law is happy. 
Bénard cells form. 
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In an essay "Order from disorder: the thermodynamics of complexity in biology," that 
appeared in the collection, What is Life? The Next Fifty Years, Eric D. Schneider and James J. 
Kay made a fascinating proposal as to why the 2nd Law allows order to concentrate locally in 
dissipative structures.9 The 2nd Law tells us that the universe wants to maximize entropy 
production in any way it can. If a system, far from equilibrium, can escalate gradient destruction 
(e.g., hot and cold going to lukewarm) and thus increase entropy production in a major way 
through the self-organized production of chaos, the 2nd Law will love this and will only be too 
willing to accommodate. What this is saying is that the evolution of life to ever more complex 
organisms, biological and social, took place not for the sake of creating or preserving more order 
in the world, but the opposite. Life both came about and evolved to bring about a more ordered 
means to unleash chaos; to allow entropy to increase far more than it would have had self-
organization never occurred. In the words of Schneider and Kay:  
 

“[The] emergence of organized behaviour, the essence of life, is now understood 
to be expected by thermodynamics. As more high quality energy is pumped into 
an ecosystem, more organization emerges to dissipate the energy. Thus we have 
order emerging from disorder in the service of causing even more disorder.” 
(Schneider and Kay, 1995: 170). 

 
If we extrapolate from Schneider and Kay’s proposition, evolving technology represents the 

human unleashed mechanism whereby order can be focused as a means of more efficiently 
satisfying human needs and solving human problems. Technology carries on where biological 
evolution leaves off. It is a mechanism for the capturing of higher and higher levels of order. But, 
contrary to the conventional wisdom, the 2nd Law allows technology, loves technology, not for its 
vaunted capacity to inject order into the human world, but for its ability to escalate chaos.  

When it comes to military technology, the chaos unleashing factor in advancing state-of-the-
art is not hard to see (or hear). On that first night of "shock and awe," exploding Tomahawk 
cruise missiles launched from warships far removed from their intended targets lit up the sky 
over Baghdad. The high and evolving order (low entropy) in military technology is a means for 
the high and evolving release of entropy as targeted destruction, death, and suffering; in a word, 
chaos. When it comes to war, entropy is the name of the game.  

But then, at least military technology is honest. It might be hard to find someone who would 
argue that guns, bombs, or missiles are meant to enhance the lives of those they're aimed at.10 
Consumer technology is different. One way or another, it is sold expressly on the promise of 
enhancing our lives. But is consumer technology really so different than its military cousin? 

 
 
 

 
                                                 
9 The idea of creating 'order from disorder' was proposed by the late, great, physicist, Erwin Schrödinger, in a series 
of lectures given in Trinity College, Dublin in 1943. The lectures were captured in what became one of the most 
influential "little" books in the history of science. It was called What is Life? As Schrödinger saw it, "the problem 
faced by organisms was how to retain their highly improbable ordered structure in the face of the second law of 
thermodynamics. Schrödinger pointed out that organisms retain order within themselves by creating disorder in their 
environment" (Murphy and O'Neill, 1995: 2). See also Schneider and Kay's essay as chapter 12, 161-173. 
10 When the cover story of a best selling supermarket tabloid proclaims that a Titanic baby has been found alive, 
floating in the Atlantic on an inner tube without food or water, and, mother of all wonders, still a baby since 1912, 
you never know what people will believe. 
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Case-in-Point: Television 
 

"'I think what is probably the biggest sin of the medium as it exists is that so little sticks to 
your ribs, that so much effort and technology goes into—what? It's like human elimination. 
It's just waste.'" 
               Grant Tinker11 
 

A number of years ago, I presented a paper with a model of the television producing system as a 
dissipative structure with its vast consuming public as the environment into which it exported 
entropy (Robbins, 1989). One of the most significant ways the TV producing system gains power 
is by dissipating its human environment. How does it do this? It does this by becoming what is 
arguably the most successful technology in history to capitalize on - you got it - G. K. Zipf's 
Principle of Least Effort.  

For argument's sake, if there are 250 million TV viewers in the USA and each, conservative-
ly speaking, watches television 3 hours per day,12 the nation spends more than 273 billion hours a 
year in an "activity" that, as Kubey and Csikszentmihalyi noted, is without peer in the department 
of lowest demands for concentration, challenge, and skill. Because virtually anything else people 
do requires more effort than watching television, by eliminating 273 billion hours of order 
producing effort, in effect television dumps 273 billion hours of disorder, a.k.a. entropy, into the 
minds and bodies of Americans of all ages. And that's just the tip of the iceberg. Television is not 
only number one in the elimination of human effort, it is number one as the driver of 
consumption. Since there has never been a product or service that doesn't come with a 2nd Law 
toll, just as the self-organizing of Bénard cells radically increases heat flow and therefore entropy 
production, the TV industry unloads massive amounts of entropy into the biosphere by radically 
increasing consumption. If we're talking sustainable future, this is not the way to go. 
  
 
Some Concluding Thoughts 
 
We humans may be dissipative structures, like every other living organism, but we are not like 
the simple (relatively speaking) Bénard cell whose order self-organizes to increase heat flow and 
thus entropy production. We can and do produce chaos, but we can also, thanks to effort, impart 
order to the world and to ourselves. We are creative and destructive. It is the same with 
technology. It not only amplifies destruction, it enables creation. It really does let us do things we 
could never do before.  

We may be the environment of high tech, but we are not rivers, not the atmosphere, not the 
oceans, not the soil that have no choice but to accept whatever is dumped. If technology unloads 
its entropy into us by capitalizing on our weakness for all things promising us less or no effort, 
we can do something about that. We can inject effort into the equation. We can choose when and 
how and how much we will deploy the power.  

 How can we do this? For starters, we can do this by recognizing what Zipf had been 
trying to tell us all along. By knowing we have this instinctive attraction to anything promising us 

                                                 
11 Kubey and Csikszentmihalyi (quoting Gitlin (1983) Inside prime time. New York: Pantheon, 16). Grant Tinker is a 
TV mogul perhaps best known as the producer of Mary Tyler Moore, Cheers, and Bob Newhart. 
12 It's difficult to find consistency in estimates of average viewing time. A. C. Nielsen is the rating service most 
frequently cited, but TV producers, whose advertising rates depend on who and how many are watching, have 
complained in the past that Nielsen's ratings were too low. 
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an easier route we can choose to not take the escalator. We can choose to press the OFF button. 
We do not have to push DOOR CLOSE.  

Although this work hardly scratches the surface, if the idea of bringing to conscious thought 
Zipf’s Principle of Least Effort allows us to better tap into the order side of our conversation with 
technology, the added effort will make good use of the extra energy consumed.  

Some rules of thumb. The 2nd Law never ever permits universal entropy to shrink. It allows 
local reduction only because the self-organized production of chaos generates more of what it 
wants. Technology, as it continues its exponential evolution, represents nodes of ever increasing 
power. To satisfy the 2nd Law, it must export entropy into its environment. Military technology 
does this clearly and honestly. Consumer technology does it subtly by capitalizing on Zipf's 
Principle of Least Effort. It's not that making life easier is the problem, it's the vast galaxy of 
things eliminating effort. The systematic global elimination of human effort is the problem. 
There's a message in the accelerating order being poured into robotics, nanotechnology, and 
genetic engineering, and it is worrisome. Injecting effort back into our conversation with 
technology may be crucial if we are to have a future. Awareness is a first step on that road. 
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Oscillation in the frequency-length relationship 

Peter Grzybek, Graz1 
Gabriel Altmann, Lüdenscheid 

 

Abstract. The analysis shows that there is no intrinsic oscillation in the relation between frequency 
and length of words. The rise of oscillation is caused by using moving averages for smoothing the 
extremely dispersed data. 

Keywords: Frequency-length relation, oscillation 

The relationship between the frequency of a word and its length has repeatedly been the 
object of linguistics studies since Zipf’s (1932, 1935) corresponding statements. Subsequent 
to his hypothesis, stating that the length of a word stands in an inverse relationship to its 
frequency, many studies have analyzed this problem, based either on texts (or parts of texts), 
frequency lists, or corpus analyses. 

Different models have been suggested to formally describe this particular relationship. In 
his comprehensive study on the German LIMAS corpus, composed of ca. 500 texts (or parts 
of texts, respectively), and comprising about one million words, Köhler (1986) tested if the 
so-called power law, implying the relationship y = ax-b, is apt to adequately describe the 
dependency of word length on word frequency. 

As a result of his statistical analysis, Köhler (1986: 137) concluded that his initial hypo-
thesis must not be rejected; in a follow-up study by Zörnig, Köhler, and Brinkmöller (1990: 
25), the authors repeat this interpretation, speaking of “a highly positive result”. Their inter-
pretation was based on an analysis of variance, yielding F1,158 = 105 (p < 0.001), (F0.01 = 6.8). 
Meanwhile, however, it is a well-known fact, that as the sample size increases, the F-test is 
problematic to reliably interpret results achieved by it. Therefore, it seems to be more reason-
able to (at least additionally) evaluate the goodness of regression models by reference to the 
determination coefficient R², although the latter, too, of course, is not free of deficiencies (cf. 
Grotjahn 1992).  

In fact, a re-analysis of Köhler’s data shows that his initial fit is far from being good, 
which is corroborated by the determination coefficient of R² = 0.24. This poor fit is clearly 
illustrated in Fig. 1, taken from Köhler (1986: 138). 

As a matter of fact, Köhler and his co-authors noticed that, irrespective of the positive F-
value, the fit of the exponential function was far from being satisfying. Therefore Köhler 
(1986: 137) concluded that, given the deviations of the empirical data from the theoretical 
curve are random, it should be possible to arrive at better results, if one smoothes the data by 
way of moving averages.  

 

                                                 
1 Address correspondence to: Peter Grzybek, Institut für Slawistik, Universität Graz, Merangasse. 70, A-8010 
Graz. E-mail: grzybek@uni-graz.at 
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Fig. 1. Corpus data representing the dependence of word length (L)  

on word frequency (F); cf. Köhler (1986: 138) 
 

Köhler did not systematically pursue this question, but re-analyzing his data, one can 
indeed show that with an increase of the intervals, the fit of the exponential function becomes 
stepwise better: 

 

smoothing interval R² 

none 0.24 

20 0.54 

50 0.77 

100 0.92 

 

Smoothing by way of moving averages, thus seems to be an effective procedure. However, 
Köhler was not so much interested in the fact of the gradually improving fit, as he was 
surprised by an oscillating curve around the theoretical hyperbolic function line: This is to say 
that, after using moving averages with intervals of 20, 50 and 100, a peculiar oscillation 
appeared which seemed to be very regular (cf. Fig. 2).  

Köhler (1986) himself and, in the subsequent detail study devoted to this particular prob-
lem, Zörnig, Köhler and Brinkmöller (1990), tried to capture the course of the data by adding 
further power components. They thus first obtained  
 
(1) L = aFb + cFd 
 
and then the rather complex function 
 
(2) 0( ) sin( )m F Fb dL aF cF ke Fα−= + + , 

which captured the oscillation in a convincing way, as can be seen in Fig. 3. 
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            Fig. 2. Smoothing the above data (cf. Fig 1) by moving averages  

                   in intervals of 50; cf. Köhler (1986: 141) 
 

 
Fig. 3. Observed and computed mean lengths (Zörnig et al. 1990: 37) 

 

What remained open, however, was a linguistic interpretation of this phenomenon, which 
Zörnig, Köhler, and Brinkmöller (1990: 39) left for “future research”. Taking into account the 
complexity of formula (2), it is not really astonishing that this problem has remained unsolved 
until today. 

In a recent study on the dependence of word length on word frequency, Strauss, Grzybek, 
and Altmann (2003) have examined individual texts, comparing the results to those obtained 
on the basis of text mixtures. In the tail of the dependence, there were many frequency classes 
without records, and the recorded ones contained a very small number of cases (mostly 1), 
thus causing a strong dispersion. Instead of smoothing the data by moving averages, they 
pooled low-frequency classes in order to obtain more stabile data. By pooling the data in such 
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a way that each frequency class contained at least 10 records, the authors obtained an 
unequivocal corroboration of the relationship in all cases (for texts from 10 different 
languages) 

 
(3) 1bL aF −= +  

where L = mean length, F = frequency, a and b are coefficients, and the constant 1 is the 
asymptote of the function (since word length was measured in terms of syllable numbers). 
Occurring non-syllabic words (such as, e.g., the Russian prepositions к, с, в), were considered 
as proclitics. It was not necessary to take oscillation into account, the fitting quite obviously 
displayed random residuals.  

Irrespective of the satisfying results, it is just the observation of the lack of oscillation 
which again rises the question of its presence in Köhler’s study; retrospectively, the problem 
pointed out by him remains unanswered till today, and it is not clear whether oscillation arose  

 
(a) due to data mixing, ultimately inherent in any corpus, or  
(b) as a result of an increasing sample size, or  
(c) whether it was an attribute of the specific data.2 
 

In the present study, an attempt shall be undertaken to offer a reason for the rise of oscillation. 
For our purposes, and by way of a working definition, oscillation can be assumed to be 
present, if the sequences of neighbouring observed data cross the theoretical curve either too 
frequently or too rarely. There is an interval within which the number of crossings – or the 
number of runs above and below the curve – can be considered to be random. We are not 
concerned with a time series, here, but with a sequence of numbers, capturing the length-
frequency relations of words, which are ordered according to their increasing frequency. 
Since only low frequencies have a sufficient number of records, while higher frequencies 
have either none or very few records, the results for higher frequencies are insufficiently 
representative – therefore, great fluctuation is to be expected in this domain. 

Fig. 4 illustrates the frequency-length dependence for the complete text of Puškin’s verse 
novel Evgenij Onegin. Interpreting the curve, one can say that, generally speaking, high-fre-
quency words tend to be shorter. This tendency holds true only on the average, however: 
whereas the curve is relatively regular at the beginning, one can observe rather irregular 
instabilities with the higher frequencies.  

The reason for these instabilities is most likely the fact that in this particular part at the 
curve’s tail, individual frequent words tend to have not more but one, two or three syllables. 
Since these words represent frequency classes in which they may occur alone, great 
dispersion results are to be expected exactly here. In other words: most probably, the greater 
dispersion is likely to be due to the insufficient number of records for these data points. 
Generalizing this observation, it would seem reasonable to assume that the exact part of the 
curve, where the dispersion becomes greater, depends on the distances between the repre-
sented classes, or on the frequencies of these classes (or both), which, in turn, might be related 
to text length (or corpus structure). 

The problem at stake is obvious: if one wants to prove the validity of the law postulated 
by Zipf, one has three options in dealing with the data and their theoretical modelling: 

 
 

                                                 
2  In another follow-up-study, Hammerl (1990) tested Polish corpus data with regard to the previously observed 

phenomenon of oscillation, but he did not find any.  
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Fig. 4. The frequency-length relationship in Evgenij Onegin 

 

(a) one tries to derive a curve capturing this chaotic movement, or  
(b) one smoothes the data to obtain a plain course, or 
(c) one smoothes the data and tries to capture also such complications (such as oscillation) 

which may arise during the process of smoothing. 
 

It is obvious, that no one would ever try to go the first way, because data of this kind are 
extremely dispersing. Therefore, some kind of smoothing is necessary, since fitting curve (3) 
to the empirical data; without any smoothing, yields a very poor result (in this case 
a = 2.1682, b = -0,4524; R² = 0.49). 

Now, as to the concrete manner of smoothing, different options are available: whereas 
Strauss, Grzybek and Altmann (2003) pooled the data and corroborated (3) in every case, 
another way was chosen by Köhler (1986) and Zörnig, Köhler, Brinkmöller (1990), who used 
moving averages and obtained the oscillating curve described above; ultimately succeeded in 
modelling this oscillation (see above), they had to leave open the question of its rise.  

It seems most reasonable that, in one way or another, the concrete manner of smoothing 
is related to the phenomenon; this is not to say that oscillation necessarily is a consequence of 
smoothing by moving averages; yet, this might be the case in combination with a particular 
data structure. In an attempt to test this assumption,  we will try to reproduce Köhler’s finding 
for Puškin’s Evgenij Onegin, and to “artificially” generate the oscillating phenomenon.  

Let us start by replicating the smoothing method applied by Strauss, Grzybek, and 
Altmann (2003). This is to say, we first have to compute the mean length of words occurring 
exactly x times. For the sake of data homogeneity, we will initially concentrate on the first 
chapter, only; the values thus obtained are represented in Table 1 (see below). We then have 
to pool the data as described above, i.e. in such a way that each frequency class is based on at 
least ten records;3 the resulting values of this pooling procedure are represented in Table 1. 

As can be seen from Table 1, smoothing by way of pooling the classes, as described 
above, yields a very good result of R2 = 0.96, which is graphically represented in Fig. 5. 

                                                 
3  If the present results slightly differ from those presented by Strauss, Grzybek, and Altmann (2003), the 

reason for this is, first, that classes are pooled here “bottom-up”, whereas they were pooled “top-down” in the 
article mentioned; and second, that the means obtained here are weighted means both for frequency and 
length, whereas unweighted means were calculated in the previous study. 
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Table 1 
Fitting (3) to the data of Evgenij Onegin: smoothing by pooling 

 
F L L* 
1 2.6595 2.7123 
2 2.1256 1.9894 
3 1.7800 1.7178 
4 1.4800 1.5716 
5 1.3750 1.4791 

6.46 1.5385 1.3911 
9.40 1.1333 1.2907 
15.10 1.2000 1.1998 
45.50 1.1000 1.0835 
a = 1.7123,   b = -0.7914, R² = 0.96 
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Fig. 5. Observed and computed mean lengths in Evgenij Onegin (ch. I) 

 

Based on these procedures of the previous work, we may now focus the question of 
oscillation and extend our ruminations. Theoretically speaking, if a fitting is satisfactory, then 
not only small sums of squared deviations should be attained, but additionally, the empirical 
values should display random fluctuations around the theoretical curve. In other words: in this 
case, there must be neither too many nor too few runs of values on both sides of the curve. If 
this should still be the case, then the data either contain an intrinsic oscillation (if there are too 
many runs) or they display a slow wavelike motion (if there are too few runs). The oscillation 
must be caught by superposed curves since a simple curve cannot capture it adequately. 
However, if the wavelike motion arises by manipulation of data, it is not real and a simple 
curve is sufficient to capture it.  

We can easily test this by applying the theory of runs (cf. Grotjahn 1979: 143ff., 1980). 
The basic idea, here, would be to test the number of sequences above and below the theo-
retical curve; in our case, it would be sufficient to know, if there are two few sequences 
(runs). In order to test this statistically, we need 
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n1 number of data points above the theoretical curve (+) 
n2 number of data points below the theoretical curve (–) 

r1 number of (+)-sequences 

r2 number of (–)-sequences 

n = n1 + n2 

r  = r1 + r2 

 

Since we are interested in the question if there are too few runs, we test the one-sided 
hypothesis. As is well known, the approximation to the normal distribution may be used, for 
larger n (n > 30). Since the number of runs does not exceed 30, however, we have to calculate 
the exact (cumulated) probabilities which can also be taken from existing tables. 

In order to show the rise of the wave, we first test the number of runs based on the data 
given in Table 2.  
 

Table 2 
Fitting (3) to the raw data in Evgenij Onegin (Chapter I) 

 

F L L*  F L L*  F L L*  
1 2.66 2.70 – 10 1 1.28 – 21 2 1.16 + 

2 2.13 1.99 + 11 1 1.26 – 24 1 1.14 – 

3 1.78 1.72 + 12 3 1.24 + 25 1 1.14  

4 1.42 1.57 – 13 1 1.23 – 32 1 1.11  

5 1.29 1.48 – 14 1 1.21 – 38 1 1.10  

6 1.43 1.42 + 15 1 1.20 – 45 1 1.09  

7 1.43 1.37 + 17 1 1.18 – 49 1 1.08  

8 1.17 1.33 – 19 1 1.17 – 68 1 1.06  

9 1.00 1.30 – 20 1 1.16 – 155 1 1.03  

a = –0.7846,   b = 1.6977,   R² = 0.43 
 

According to the description above, the positive deviations, i.e., those values which lie 
above the theoretical curve, are marked by (+), the negative ones, i.e., those that lie below it, 
by (–). Since in the whole tail, the theoretical curve lies above the empirical data, we cut off 
the both after the first negative sign of the last run; the number of runs thus remains constant, 
but the number of elements decreases thus requiring more extreme test results. As can be 
seen, we have  
 

n1 = 6 (6 times “+”) r1 = 4 (4 runs of “+”) 

n2 = 14 (14 times “–“) r2 = 5 (5 runs of “–“) 

n = n1 + n2 = 20 r1 + r2 = 9 
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Since the number of runs is relatively small (r < 30), we have to calculate the exact 
cumulative probability, and we thus obtain P(R ≤ r) = 0.5204, which is not significant, of 
course: this is to say that the number of runs does not differ from the expected one.  

Now, let us smooth the data using moving averages with larger intervals. Table 3, re-
presents the results of smoothing with moving averages on the basis of different intervals. In 
the following tables interval 1 means no smoothing. 
 

Table 3 
Building moving averages and testing the runs 

 
Interval of 
the moving 

average n1 n2 n r1 r2 r P(R < r) 
1 14 6 20 5 4 9 0.5204 
2 15 5 20 4 3 7 0.2722 
3 14 6 20 3 2 5 0.0173 
4 12 8 20 3 2 5 0.0063 

 

It can clearly be seen that, with an increase of the intervals, the probability for oscillation to 
come into play soon rises. Figure 6 convincingly illustrates this tendency, juxtaposing the 
results for both manners of smoothing for the sake of comparison. 
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Fig. 6. Observed and computed mean lengths in Evgenij Onegin (ch. I) 

 

For the sake of generalisation, let us finally extend this procedure to a broader text basis. 
Table 4 represents the results for each of the eight chapters of Evgenij Onegin; in order to 
eventually compare the exact results to those obtained by approximation to the normal dis-
tribution, both values are presented in parallel. The comparison of the smoothed values with 
the theoretical curve yields the following results (see Table 4): 
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Table 4 
Test for the number of runs with different smoothing intervals 

(Evgenij Onegin, chs. I–VIII) 
 

 N Interval n1 n2 n r1 r2 r P(R < r) 
1 15 5 20 5 4 9 0.7417 
2 14 6 20 4 3 7 0.1514 EO 1 3086 
3 14 6 20 3 2 5 0.0173 
1 12 7 19 5 4 9 0.4276 
2 12 7 19 5 4 9 0.4276 
3 13 6 19 3 2 5 0.0217 

EO 2 2235 

4 11 8 19 2 1 3 0.0003 
1 9 7 16 3 2 5 0.0350 
2 10 6 16 3 2 5 0.0470 EO 3 2702 
3 12 4 16 2 1 3 0.0088 
1 7 6 13 3 2 5 0.1212 
2 7 6 13 3 2 5 0.1212 
3 8 5 13 3 2 5 0.1515 

EO 4 2441 

4 10 3 13 2 1 3 0.0455 
1 10 6 16 6 5 11 0.9580 
2 10 6 16 3 2 5 0.0470 
3 9 7 16 3 2 5 0.0350 
4 11 5 16 3 2 5 0.0769 

EO 5 2310 

5 11 5 16 2 1 3 0.0037 
1 10 5 15 5 4 9 0.8741 
2 9 6 15 4 3 7 0.3427 
3 10 5 15 4 3 7 0.4545 
4 10 5 15 3 2 5 0.0949 

EO 6 2471 

5 9 5 14 2 1 3 0.0070 
1 14 8 22 6 5 11 0.5573 
2 14 8 22 4 3 7 0.0408 
3 13 9 22 4 3 7 0.0294 

EO 7 2922 

4 15 7 22 3 2 5 0.0055 
1 14 10 24 5 4 9 0.0857 
2 14 10 24 5 4 9 0.0857 
3 17 7 24 4 3 7 0.0450 

EO 8 3217 

4 19 5 24 3 2 5 0.0209 
 

As can clearly be seen, in most cases, intervals of three or four radically change the situation: 
It is almost self-evident that values of P < 0.05 signalize significantly few runs, i.e., the rise of 
a slow wave motion (with a one-sided hypothesis). As a matter of fact, by prolonging the 
intervals, one obtains ever longer waves, what need not be demonstrated in detail, here. 
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Additionally, in order to at least raise the questions of text length or data mixture, Table 5 
represents the results for a successive cumulation of chapters I-VIII of Evgenij Onegin. 
 

Table 5 
Test for the number of runs with different smoothing intervals 

(Evgenij Onegin, cumulated chs. I–VIII) 
 

 N Interval n1 n2 n r1 r2 r P(R < r) 
1 17 13 30 10 9 19 0.9238 
2 17 13 30 7 6 13 0.1980 
3 17 13 30 7 6 13 0.1980 

EO 1-2 5321

4 18 12 30 5 4 9 0.0106 
1 21 15 36 11 10 21 0.8521 
2 21 15 36 7 6 13 0.0404 
3 25 11 36 6 5 11 0.0306 

EO 1-3 8023

4 27 9 36 4 3 7 0.0012 
1 20 22 42 10 9 19 0.2204 

EO 1-4 10464
2 22 20 42 7 6 13 0.0036 
1 27 21 48 14 13 27 0.8026 
2 29 19 48 10 9 19 0.0872 EO 1-5 12774
3 31 17 48 7 6 13 0.0013 
1 30 25 55 14 13 27 0.4153 

EO 1-6 15245
2 27 28 55 10 9 19 0.0067 

EO 1-7 18167 1 35 28 63 10 9 19 0.0005 
1 33 30 63 13 12 25 0.0383 

EO-tot 21401
2 32 31 63 6 5 11 0.0000 

 

Again, one clearly sees the impact of smoothing by moving averages on the rise of oscillation; 
additionally, it can easily be observed that oscillation is more likely to arise for the larger, 
cumulated samples. If this is due to sample size, or data mixture, or to a combination of both 
factors, will have to be the topic of a detail study particularly devoted to this problem.  

Summarizing we can state that the relation between frequency and length of words does 
not contain an intrinsic oscillation based on a linguistic cause, as has previously been 
suspected. It is simply the consequence of a special kind of smoothing.  
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