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How many words are there? 
 

András Kornai1  
 
 
Abstract. The commonsensical assumption that any language has only finitely many words is shown 
to be false by a combination of formal and empirical arguments. Zipf's Law and related formulas are 
investigated and a more complex model is offered. 
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1.  Introduction 
 
Ask the lay person how many different words are there, and you are likely to receive a sur-
prisingly uniform set of answers. English has more words than any other language. There are 
over a hundred thousand words in unabridged dictionaries. The OED has over three hundred 
thousand, but there are still a few words missing. A five year old knows five thousand words, 
an adult uses fifteen thousand. Shakespeare used thirty thousand, but Joyce used even more. 
Some primitive tribes get along with only a few hundred words. Eskimo has seventeen words 
for snow. Introductory linguistics courses invariably spend a great deal of energy on rebutting 
these and similar commonly known �facts� about languages in general and English in partic-
ular. But the basic fallacy, what we will call the closed vocabulary assumption, that there is a 
fixed number of words S in any given language, is often present even in highly technical work 
otherwise based on a sophisticated understanding of language. Open vocabulary, that words 
in a language form a denumerably infinite set, is a standard assumption in generative linguis-
tics, where it is justified by pointing at productive morphological processes such as 
compounding and various kinds of affixation. Yet somehow the existence of such processes 
generally fails to impress those with more of an engineering mindset, chiefly because the 
recursive aspect of these processes is weak � the probability of iterated rule application 
decreases exponentially with the number of iterations. 

In this paper we offer a new quantitative argument why vocabulary must be treated as 
open. We investigate vocabulary size not as an isolated number, but rather as part of the 
broader task of trying to estimate the frequency of words. The rest of this Introduction 
establishes the terminology and notation and surveys the literature. Section 2 disposes of 
some widely used arguments in favor of closed vocabulary by means of counterexamples and 
introduces the  subgeometric mean property that will play a crucial role in the subsequent 
analysis of vocabulary size. Section 3 explores the regions of extremely high and extremely 
low frequencies, where the basic regularity governing word frequencies, Zipf's Law, is known 
to fail. Section 4 investigates some widely used alternatives to Zipf's Law, including the beta, 
lognormal, Waring, and negative binomial distributions, and shows why most of these are 
inferior to Zipf's Law. We offer our conclusions in Section 5. 

 

                                                           
1 Address correspondence to: Andras Kornai, Metacarta Inc. 126 Prospect St, Cambridge, MA 02139 
USA.  E-mail: andras@kornai.com 
 



András Kornai 

 

62 

1.1.  Zipf's Laws 
 
It is far from trivial to define words in spoken or signed language, but in this paper we can 
steer clear of these difficulties by assuming some conventional orthography or linguistic 
transcription system that has one to one correspondence between orthographic words 
(maximum non-white-space non-punctuation strings) and prosodic words. Because a large 
variety of transcription systems exist, no generality is lost by restricting our attention to text 
that has already been rendered machine readable. For the sake of concreteness we will assume 
that all characters are lowercased and all special characters, except for hyphen and 
apostrophe, are mapped on whitespace. The terminal symbols or letters of our alphabet are 
therefore L = {a, b, ..., z, 0, 1, ... 9, ', -} and all word types are strings in L*, though word 
tokens are strings over a larger alphabet including capital letters, punctuation, and special 
characters. Using these or similar definitions, counting the number of tokens belonging in the 
same type becomes a mechanical task. The results of such  word counts can be used for a 
variety of purposes, such as the design of more efficient codes, typology, investigations of 
style, authorship, language development, and statistical language modeling in general. 

Given a corpus Q of N word tokens, we find V different types, V ≤  N. Let us denote the 
absolute frequency (number of tokens) for a type w by FQ(w), and the relative frequency 
FQ(w)/N by fQ(w). Arranging the w in order of decreasing frequency, the rth type (wr) is said 
to have  rank r, and its relative frequency fQ(wr) will also be written fr. As Estoup (1916) and 
Zipf (1935) noted, the plot of log frequencies against log ranks shows, at least in the middle 
range, a reasonably linear relation. Fig. 1 shows this for a single issue of an American 
newspaper, the San Jose Mercury News, or Merc for short. 

 
Fig. 1. Plot of log frequency as a function of log rank 

for a newspaper issue (150k words) 
 

Denoting the slope of the linear portion by �B, B is close to unity, slightly higher on some 
plots, slightly lower on others. Some authors, like Samuelsson (1996), reserve the term �Zipf's 
Law� to the case B = 1, but in this paper we use more permissive language, since part of our 
goal is to determine how to formulate this regularity properly. As a first approximation, Zipf's 
Law can be formulated as 
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(1) )log()log( rBHf NNr −=  
 
where HN is some constant (possibly dependent on our random sample Q and thus on N, but 
independent of r). When this formula is used to fit a Zipfian curve to frequency data, with 
increased corpus size not only the intercept HN but also the slope BN will depend on the 
corpus size N. We reserve the term �Zipfian� to the case where BN tends to a constant B as N 
tends to infinity, but do not assume in advance B = 1. (1) is closely related to, but not 
equivalent with, another regularity, often called Zipf's Second Law. Let V(i,N) be the number 
of types that occur i times: Zipf's Second Law is usually stated as 
 
(2) )).,(log()log( NiVDKi NN −=  
 
 
1.2.  Background 

As readers familiar with the literature will know, the status of Zipf's Law(s) is highly 
contentious, and the debate surrounding it is often conducted in a spectacularly acrimonious 
fashion. As an example, we quote here Herdan (1966:88):  
 

The Zipf law is the supposedly straight line relation between occurrence frequency of words in a 
language and their rank, if both are plotted logarithmically. Mathematicians believe in it because 
they think that linguists have established it to be a linguistic law, and linguists believe in it because 
they, on their part, think that mathematicians have established it to be a mathematical law. [...] 
Rightly seen, the Zipf law is nothing but the arbitrary arrangement of words in a text sample 
according to their frequency of occurrence. How could such an arbitrary and rather trivial ordering of 
words be believed to reveal the most recondite secrets, and the basic laws, of language? 
 

We can divide the literature on the subject in two broad categories: empirical curve fitting and 
model genesis. The first category is by far the more voluminous, running to several thousand 
scholarly papers and hundreds of monographs. Here we do not even attempt to survey this 
literature: QUALICO conference volumes and the Journal of Quantitative Linguistics offer a 
good entry point. In mathematical statistics, attempts to discern the underlying mechanism 
that gives rise to a given distribution are called investigations of model genesis a particularly 
successful example is the explanation why normal distribution appears so often in seemingly 
unrelated areas, provided by the central limit theorems. Given the sheer bulk of the literature 
supporting some Zipf-like regularity in domains ranging from linguistic type/token counts to 
the distribution of wealth, it is natural that statisticians sought, and successfully identified, 
different mechanisms that can give rise to (1-2) or related laws. 

The first results in this direction were obtained by Yule (1924), working on a version of 
(2) proposed in Willis (1922) to describe the number of species that belong to the same genus. 
Assuming a single ancestral species, a fixed annual probability s of a mutation that produces a 
new species, and a smaller probability g of a mutation that produces an entirely new genus, 
Yule shows that over time the distribution for the number of genera V(i,N) with exactly i 
species will tend to 
 

(3) sgi
c

/1+  

 
which is the same as (2) with DN  = s/(s+g) and KN  = �s log(ζ(1+g/s))/(s+g) independent of N 
(the Riemann ζ function enters the picture only to keep probabilities summing to one). 
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This is not to say that words arise from a single undifferentiated ancestor by a process of 
mutation, but as Zipf already noted, the most frequent words tend to be the historically older 
ones, which also have the highest degree of polysemy. The essential point of Yule's work is 
that a simple, uniform process of mutation can give rise, over time, to the characteristically 
non-uniform �Zipfian' distribution: merely by being around longer, older genera have more 
chance to develop more species, even without the benefit of a better than average mutation 
rate. 

The same distribution has been observed in patterns of income by Pareto (1897), and 
there is again a large body of empirical literature supporting Zipf's Law (known in economics 
as Pareto's Law). Champernowne (originally in 1936, but not fully published until 1973) 
offered a model where the uneven distribution emerges from a stochastic process (Champer-
nowne 1952, 1953, 1973, see also Cox and Miller 1965) with a barrier corresponding to 
minimum wealth. 

Zipf himself attempted to search for a genesis in terms of a �principle of least effort�, but 
his work (Zipf 1935, 1949) was never mathematically rigorous, and was cut short by his 
death. A mathematically more satisfying model specifically aimed at word frequencies was 
proposed by Simon (1955), who derived (2) from a model of text generation based on two 
hypotheses: (i) new words are introduced by a small constant probability, and (ii) old words 
are reused with the same probability that they had in earlier text. 

A very different genesis result was obtained by Mandelbrot (1952) in terms of the classic 
�monkeys and typewriters� scenario. Let us designate an arbitrary symbol on the typewriter as 
a word boundary, and define �words� as maximum strings that do not contain it. If we assume 
that new symbols are generated randomly, Zipf's law can be derived for B > 1. Remarkably, 
the result holds true if we move from a simple Bernoulli experiment (zero order Markov 
process) to higher order Markov processes. 

In terms of content, though perhaps not in terms of form, the high point of the Zipfian 
genesis literature is the Simon-Mandelbrot debate (Mandelbrot 1959, 1961a-c; Simon 1960, 
1961a,b). Simon's genesis works equally well irrespective of whether we assume closed (B < 
1) or open (B ≥  1) vocabulary. For Mandelbrot, the apparent flexibility in choosing any 
number close to 1 is a fatal weakness in Simon's model. While we will argue for open 
vocabulary, and thus side with Mandelbrot for the most part, we believe his critique of Simon 
to be too strict in the sense that explaining too much is not as fatal a flaw as explaining 
nothing. Ultimately, the general acceptance of Mandelbrot's genesis as the linguistically more 
revealing rests not on his attempted destruction of Simon's model but rather on the fact that 
we see his model as more assumption-free.  

 

2.  Exponential and subexponential decay 
 
Arguments based on counting the frequency of various words and phrases are nothing new: in 
the 1640s a Swedish sect was deemed heretical (relative to Lutheran orthodoxy) on the basis 
of larger than expected frequency of forms such as Christ bleeding, Christ suffering, Christ 
crucified found in its Sion Psalmbook. With such a long tradition, predating the foundations 
of modern probability theory by centuries, it should come as no surprise that a considerable 
number of those employing word counts still reject the standard statistical view of corpora as 
samples from some underlying population. In particular, Zipf himself held that collecting 
more data about word frequency can sometimes distort the picture, and there is an �optimum 
corpus size�. For a modern discussion and critique of this notion see Powers (1998), and for 
an attempt to recast it in a contemporary statistical framework see Baayen (2001:5.2), who 
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traces the method to papers published in the eighties by Orlov, Chitashvili, and Khmaladze 
(non vidi). 

The central mathematical method of this paper is to make explicit the dependence of 
certain model parameters on corpus size N, and let N increase without bounds. Since this 
method only makes sense if we assume the standard apparatus of mathematical statistics and 
probability theory, in 2.1 we devote some time to defending the standard view. In 2.2 we 
introduce a simple normalization technique that makes frequency counts for different values 
of N directly comparable. In 2.3 we compare the normalized distributions to exponential 
decay, an unrealistic, but mathematically very tractable model. We introduce the more real-
istic subgeometric mean property in 2.4, and the empirically observable power law of 
vocabulary growth in 2.5. 

 

2.1.  Corpora as samples 
 
Suppose that the primary focus of our interest is the journalistic/nonfiction-literary style 
exemplified by the Merc, or that even more narrowly, our focus is just the Merc and we have 
no intention of generalizing our results to other newspapers, let alone other stylistic ranges. 
While the Merc is a finite corpus, growing currently at a rate of 60m words/year, our goal is 
not an exhaustive characterization of past issues, but rather predicting word frequencies for 
future issues as well. Therefore, the population we care about is an infinite one, comprising 
all potential issues written in �Merc style� and each issue is but a finite sample from this 
infinite population. The issue we wish to address is whether this population is based on a 
finite (closed) vocabulary, or an infinite (open) one. 

It is often argued that synchronic vocabularies are by definition closed, and only in a 
diachronic sense can vocabulary be considered open. New words enter the language at a 
perceptible rate, and the Merc shows this effect as well as any other continually growing 
corpus. But this process is considerably slower than the temporal fluctuations in word 
frequency occasioned by certain geographic locations, personages, or products getting in the 
news, and is, at least to some extent, offset by the opposite process of words gradually falling 
into disuse. What we wish to demonstrate is openness in the synchronic sense, and we will not 
make any use of the continually growing nature of the Merc corpus in doing so. In fact, we 
shall argue that even historically closed corpora, such as Joyce's Ulysses, offer evidence of 
being based on an open vocabulary (see 4.1). This of course makes sense only if we are 
willing to go beyond the view that the words in Ulysses comprise the entire statistical 
population, and view them instead as a sample of Joyce's writing, or even more narrowly, as a 
sample of Joyce's writing books like  Ulysses. It is rather unlikely that a manuscript for a 
sequel to Ulysses will some day surface, but the possibility can not be ruled out entirely, and 
it is only predictions about unseen material that can lend support to any model. The Merc is 
better for our purposes only because we can be reasonably certain that there will be future 
issues to check our predictions against. 

The empirical foundation of probabilistic arguments is what standard textbooks like 
Cramér (1955) call the stability property of frequency ratios: for any word w, by randomly 
increasing the sample Q without bounds, fQ(w) = FQ(w)/N tends to some f(w) as N tends to 
infinity. In other words, sample frequencies must converge to a fixed constant 1)(0 ≤≤ wf  
that is the probability (population frequency) of the word. In the context of using ever-
increasing corpora as samples, the stability of frequency ratios has often been questioned on 
the basis of the following argument. If vocabulary is not closed, the pie must be cut into more 
and more slices as sample size is increased, and therefore the relative frequency of a word 
must, on average, decay. 
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Since word frequencies span many orders of magnitude, it is difficult to get a good feel 
for their rate of convergence just by looking at frequency counts. The log-log scale used in 
Zipf plots is already an indication of the fact that to get any kind of visible convergence, 
exponentially growing corpora need to be considered. Much of traditional quantitative 
linguistic work stays close to the Zipfian optimum corpus size of 104-105 words simply 
because it is based on a closed corpus such as a single book or even a short story or essay. But 
as soon as we go beyond the first few thousand words, relative frequencies are already in the 
10-6 range. Such words of course rarely show up in smaller corpora, even though they are 
often perfectly ordinary words such as  uniform that are familiar to all adult speakers of 
English. Let us therefore begin by considering an artificial example, in which samples are 
drawn from an underlying geometrical distribution .2/1)( rwf =  

Example 1. If the rth word has probability pr = 2-r, in a random sample Q of size N = 2m 
we expect 2m-1 tokens of w1, 2m-2 tokens of w2, ..., 2 tokens of wm-1, 1 token of wm and one 
other token, most likely another copy of w1. If this expectation is fulfilled, the frequency ratio 
based estimate fS(wr) of each probability pr = f(wr) is correct within 1/N. Convergence is 
therefore limited only by the resolution offered by corpus size N, yet the number of types 
V(N) observed in a sample of N tokens still tends to infinity with log2(N). 

Discussion. Needless to say, in an actual experiment we could hardly expect to get results 
this precise, just as in 2N tosses of a fair coin the actual value of heads is unlikely to be 
exactly N. Nevertheless, the mathematical expectations are as predicted, and the example 
shows that no argument based on the average decline of probabilities could be carried to the 
point of demonstrating that closed vocabulary is logically necessary. Though not necessary, 
closed vocabulary is still possible, and it is easy to construct examples, e.g. by using 
phonemes or syllables instead of words. What we will demonstrate in Theorem 1 is that 
closed vocabulary is logically incompatible with observable properties of word counts. 

 

2.2.  Normalization 
 
We assume that population frequencies give a probability distribution over L*, but for now 
remain neutral on the issue of whether the underlying vocabulary is open or closed. We also 
remain neutral on the rate of convergence of frequency ratios, but note that it can be seen to 
be rather slow, and not necessarily uniform. If rates of convergence were fast to moderate, we 
would expect empirical rankings based on absolute frequencies to approximate the perfect 
ranking based on population frequencies at a comparable rate. For example one could hope 
that any word that has over twice the average sample frequency 1/V(N) is already �rank 
stabilized� in the sense that increasing the sample size will not change its rank. Such hopes 
are, alas, not met by empirical reality: doubling the sample size can easily affect the ranking 
of the first 25 items even at the current computational limits of N, 109-1010 words. For 
example, moving from a 10m corpus of the Merc to a 20m corpus already affects the rankings 
of the first four items, changing the, of, a, to to the, of, to, a. 

Since sample rank is an unreliable estimate of population rank, it is not at all obvious 
what Zipf's law really means: after all, if we take any set of numbers and plot them in 
decreasing order, the results charted on log-log scale may well be approximately linear, just as 
Herdan, quoted above, suggests. As a first step, we will normalize the data, replacing absolute 
rank r by relative rank x = r/V(N). This way, the familiar Zipf-style plots, which were not 
scale invariant, are replaced by plots of function values f(x) restricted to the unit square. 
f(1/V(N)) = f(w1) is the probability of the most frequent item, f(1) = f(V(N)/V(N)) = 1/N is the 
probability of the least frequent item, and for technical reasons we define the values of f 
between r/(V(N)) and (r+1)/V(N) to be p(wr+1). A small sample (four articles) is plotted in this 
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style in Fig. 2. Since the area under the curve is 1/V(N), by increasing the sample size, plots of 
this kind get increasingly concentrated around the origin. 

 
    Fig. 2. Frequency as a function of normalized rank (4 articles, 1.5k words) 

 

2.3.  Exponential decay 
 
In approximating such a curve an obvious choice would be to try exponential decay i.e. f(x) ~  
Ce-Dx with some constants C,D  > 0. However, for reasons that will shortly become apparent, 
no such curve provides a very good fit, and we merely use the exponential model as a tool to 
derive  from first principles a lower bound for V(N). We will use the following facts: 
 
(F1)    For any f obtained from a random sample Q of size N, f(1/V(N)) tends to p1, the fre-

quency of the most frequent item, as N ∞→  
(F2) For any f obtained from a random sample Q of size N, f(1) = 1/N 
(F3)  Word frequencies decay subexponentially (slower than exp(�Dx) for any D > 0). 
 
Theorem 1. Under conditions (F1-F3) V(N) grows at least as fast as log(N)(1�1/N). 
 

Proof: ∑ =
= )(

1
)(/))(/()(/1 NV

r
NVNVrfNV  is a rectangular sum approximating ∫

1

0
.)( dxxf  

Since f(x) is subexponential, for any g(x) = exp(�Dx) that satisfies g(1/V(N)) 1p≥ and g(1) 
≥ 1/N, we have g(x) ≥  f(x) everywhere else in the interval [1/V(N),1], and therefore 1/V(N) < 
∫ −1
0 )exp( dxDx  = (1 � exp(�D))/D. Using (F2) we compute D = log(N), and therefore V(N) ≥  

log(N)(1�1/N). 
 
Discussion. Since any theorem is just as good as its premises, let us look at the conditions in 
some detail. (F1) is simply the axiom that sample frequencies for the single most frequent 
item will tend to its population frequency. Though this is not an entirely uncontroversial 
assumption (see 2.1), there really is no alternative: if frequency ratios can't be expected to 
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stabilize even for the most frequent word, there is nothing we can hope to accomplish by 
measuring them. On the surface (F2) may look more dubious: there is no a priori reason for 
the least frequent word in a sample to appear only once. For example, in closed vocabulary 
Bernoulli experiments (e.g. phoneme or grapheme counts) we would expect every item to 
appear at least twice as soon as the sample size is twice the inverse probability of the least 
frequent item. In the final analysis, (F2) rests on the massively supported empirical observ-
ation that hapaxes are present in every corpora, no matter how large (see 3.4). 

It may therefore be claimed that the premises of the theorem in some sense include what 
we set out to prove (which is of course true of every theorem) and certainly in this light the 
conclusion that vocabulary must be open is less surprising. In fact a weaker bound can already 
be derived from g(1/V(N)) ≥  p1, knowing g(x) = exp(�Dx) and D = log(N). Since exp(�
log(N)/V(N)) ≥  p1 we have V(N) ≥  log(N)/log(1/p1), an estimate that is weakest for small p1. 
Baayen (2001: 49) notes that a Turing-Good type estimate (Good 1953) can be used to 
approximate the rate at which the expected value of V(N) changes by the left derivative 
V(1,N)/N, so that if hapaxes are always present we have V´(N) ≥  1/N, and by integrating both 
sides, V(N) ≥  log(N). While the heuristic force of this simple argument is clear, it is not trivial 
to turn it into a rigorous proof, inasmuch as Turing-Good estimates are best viewed as 
Bayesian with a uniform prior over the (finite) set of types, see Nádas (1985). 

 

2.4.   The subgeometric mean property 
 
The most novel of our assumptions is (F3), and it is also the empirically richest one. For any 
exponent D, exponentially decaying frequencies would satisfy the following geometric mean 
property 
 

if r and s are arbitrary ranks, and their (weighted) arithmetic mean is t, the frequency at t is the 
(weighted) geometric mean of the frequencies at r and s. 

 
What we find in frequency count data is the subgeometric mean property, namely that 
frequency observed at the arithmetic mean of ranks is systematically lower than frequency 
computed as the geometric mean, i.e. that decay is slower than exponential: for any 0 ≤  p,q < 
1,  p + q = 1 we find 
 
(4) q

s
p

rqspr fff ≤+ . 
 
In geometrical terms (4) means that log(fr) is convex (viewed from below). This may not be 
strictly true for very frequent items (a concern we will address in 3.1) and will of necessity 
fail at some points in the low frequency range, where effects stemming from the resolution of 
the corpus (i.e. that the smallest gap between frequency ratios cannot be smaller than 1/N) 
become noticeable. If the rth word has i tokens but the (r+1)th word has only i�1 tokens, we 
can be virtually certain that their theoretical probabilities (as opposed to the observed 
frequency ratios) differ less than by 1/N. At such steps in the curve, we cannot expect the 
geometric mean property to hold: the observed frequency of the rth word, i/N, is actually 
higher than the frequency computed as the geometric mean of the frequency of e.g. the (r�1)th 
and (r+1)th words, which will be Nii /)1( − . To protect our Theorem 1 from this effect, we 
could estimate the area under the curve by segregating the steps up to log(log(N)) from the 
rest of the curve by two-sided intervals of length Nε, but we will not present the details here 
because log(N) is only a lower bound on vocabulary size, and as a practical matter, not a very 
good one. 
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2.5.  The power law of vocabulary growth 
 
Empirically it seems quite incontestable that V(N) grows with a power of N:  
 
(5) ρNNV =)(  
 
where 0 < ρ < 1  is some constant, dependent on style, authorship, and other factors, but 
independent of N (Herdan 1964:157 denotes this constant by C). In practice, we almost 
always have ρ > 0.4, but even for smaller positive ρ the empirical power law would still be 
stronger than the theoretical (logarithmic) lower bound establised in 2.3 above.  

In what follows, we illustrate our main points with a corpus of some 300 issues of the 
Merc totaling some 43m words. While this is not a large corpus by contemporary standards, it 
is still an order of magnitude larger than the classic Brown and LOB corpora on which so 
much of our current ideas about word frequencies was first developed and tested, and 
empirical regularities observed on a corpus this size can not be dismissed lightly. 

In one experiment, we repeatedly doubled the size of our sample to include 1,2,...,128 
issues. The samples were selected randomly at each step so as to protect our results against 
arguments based on diachronic drift, and each sample was kept disjoint from the previous 
ones. If we plot log vocabulary size against log sample size, this experiment shows a 
remarkably good linear relationship (see Fig. 3), indicating that V(N) ~ Nq, with q ≈  0.75. A 
similar �power law� relationship has been observed in closed corpora (including some 
Shakespeare plays) by Turner (1997). 

 
Fig. 3. Growth of vocabulary size V(N) against corpus size N in the Merc on log-log scale  

 
The assumption that a power law relates vocabulary size to sample size goes back at least to 
Guiraud (1954) (with ρ = 0.5) and Herdan (1960). The main novelty in our approach is that 
we need not postulate (5) as an empirical law, but will derive it as a consequence of Zipf's 
second law in 3.2. We should add here that (5) is just an approximate empirical law, and some 
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slower patterns of infinite growth such as ))log(log(/)( NDNNV =  would still look reasonably 
linear for N <1010 at log-log scale, and would be just as compatible with the observable data. 

The lesson that we would like to take away from Theorem 1 is not the quantitative form of 
the relationship V(N) ≥  log(N)(1�1/N), since this is a rather weak lower bound, but the 
qualitative fact that vocabulary size grows in an unbounded fashion when sample size is 
increased. Less than logarithmic growth is logically inconsistent with the characteristic 
properties of corpora, namely their subexponential decay and that singletons (hapaxes) are 
present in every corpus, no matter how large. In fact, hapaxes are not only present, they 
comprise a significant portion h of the word types, a matter we shall return to in 3.4. 

 

3.  Frequency extremes 
 
Implicitly or explicitly, much of the work concerning word frequency assumes a Bernoulli-
style experimental setup, in which words (tokens) are randomly drawn, with replacement, 
from a large urn containing all word types in fixed proportions. Though clearly not intended 
as a psychologically realistic model of speech or writing, it is nevertheless a very useful 
model, and rather than abandoning it entirely, our goal here is to refine it to fit the facts better. 
In particular, we follow Mandelbrot's (1961c) lead in assuming that there are two urns, a small 
one UF for function words, and a larger one UC for content words. The reasons why high 
frequency items are expected to behave differently are discussed in 3.1, where the relative 
sizes of the two urns are estimated by a heuristic argument. In 3.2 we argue that there need be 
no perceptible break between the two urns, and show how the power law (5) can be derived 
from (1) using only trivial facts about UC. A more rigorous treatment of low frequency items 
is given in 3.3, and �ultra-low� frequency items, hapax legomena and dis legomena are 
discussed in 3.4. 
 
 
3.1.    Function words vs. content words 
 
Starting with Herdan (1960) it is common to set aside function words in UF, since their 
placement is dictated by the rules of syntax rather than by efforts to choose the semantically 
appropriate term. The same point can be made with respect to other Zipf-like laws. For 
example, in the case of city sizes, it stands to reason that the growth of a big city like New 
York is primarily affected by local zoning laws and ordinances, the pattern of local, state, and 
federal taxes, demographic and economic trends in the region, and immigration patterns: the 
zoning laws etc. that affect Bombay are almost entirely irrelevant to the growth of New York. 
But once we move to mid-sized and small population centers, the general spatial patterns of 
human settlement can be expected to assert themselves over the special circumstances 
relevant to big cities. (The issue is more complex for the largest concentrations of individual 
wealth, because the individuals will often diversify their holdings precisely in order to avoid 
disproportionate effects of laws and regulations affecting different sectors selectively. If true, 
this reasoning would suggest that Pareto's Law in economics suffers less from discrepancies 
at the high end than Zipf's Law in linguistics.) Another reason to set function words aside is 
that their use is subject to a great deal of idiosyncratic variation, so much so that principal 
component analysis on the function word counts is effective in separating different authors 
(Burrows:1987). 

Our first task is to estimate the relative sizes of the two urns. Let fN(x) be a family of [0,1] 
→  [0,1] functions with the following properties: 
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(U1)  exponential decay, fN (x) = exp(�DNx) 
(U2)  left limit, fN (1/N) is a constant, say exp(�c) 

(U3)  linear area law, ∫
+

=
NNV

N N Ndxxf
/)2/1)((

2/1
/1)( . 

 
To fix ideas, the fN  should be thought of as normalized frequency distributions, but the x axis 
is scaled by N rather than V(N) as before: values of fN  for x > V(N)/N are simply 0. Also, we 
think of the values fN (r/N) as providing the ordinate for trapezoidal sums approximating the 
integrals, rather than the rectangular sums used above. Since the width of the trapezoids is 1/N 
and their height sums to 1, the trapezoidal sum is 1/N rather than 1/V(N) as before. 

From (U1) and (U2) we get DN  = cN, which for (U3) gives  
 

[ ]∫
+

+−−−=−=
NNV

N

NVcc
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Since V(N) ∞→  as N ∞→ , the last term can be neglected and we get c = exp(�c/2). 
Numerically, this yields c = 0.7035 meaning the frequency of the most frequent item is 
49.4866%. 

While our argument is clearly heuristic, it strongly suggests that nearly half of the tokens 
may come from function words i.e. the two urns are roughly the same size. An alternative to 
using two separate urns may be to tokenize every function word as an instance of a catchall 
�functionword' type. The standard list in Vol 3 of Knuth (1971) contains 31 words said to 
cover 36% of English text, the 150 most frequent used in Unix covers approximately 40% of 
newspaper text, and to reach 49.5% coverage on the Merc we need less than 200 words. By 
grouping the appropriate number of function words together we can have the probability of 
the dominant type approximate 49.5%. 

 
 

3.2.    High frequency items 
 
From the statistical perspective the tokenization process is arbitrary. We may wish to declare  
THE, The, and the to be tokens of the same type, or we may wish to keep them separate. We 
may declare a and an to be tokens of the same type, or, if we are so inclined, we may even 
declare a, an, and the to be tokens of the same �article' type. In French we may have good 
reasons to tokenize du as de + le, in English we may keep a + priori together as a single 
token. Because some reorganization of the data in the tokenization step (using only finite 
resources) is often desirable, it should be emphasized that at the high end we cannot in general 
expect Zipf-like regularity, or any other regularity. 

For example, Fig. 1 completely fails to show the linear pattern predicted by Zipf's law. 
Furthermore, it has multiple inflection points, so fitting other smooth curves is also 
problematic at the high end. The geometric mean property is also likely to fail for very high 
frequency items, but this does not affect our conclusions, since the proof can be carried 
through on UC  alone, either by segregating function words in UF or by collecting them in a 
single functionword type that is added to UC. 

In reality, there is no clear-cut boundary between function words and content words 
based on rank or other observable properties. In fact, many function words like on are 
homographic to content words: for example, in The cat is on the mat we see the locative 
meaning of on rather than the purely prepositional one as in go on �continue'. To account for 
this, ideally UC should also contain some function word homographs, albeit with different 
probabilities. It would require sophisticated sense disambiguation to reinterpret the frequency 
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counts this way, and we make no further efforts in this direction here, but note that because of 
this phenomenon the use of two separate urns need not result in a perceptible break in the 
plots, even if the functional wordsenses are governed by laws totally different from the laws 
governing the contentful wordsenses. 

It will be evident from Table 1 below that in the Merc no such break is found, and as long 
as markup strings are lexed out just as punctuation, the same is true of most machine readable 
material. Several explanations have been put forth, including the notion that elements of a 
vocabulary �collaborate�, but we believe that the smooth interpenetration of functional and 
contentful wordsenses, familiar to all practicing linguists and lexicographers, is sufficient to 
explain the phenomenon. Be it as it may, in the rest of 3.2 we assume the existence of some 
rank boundary k, (30 < k < 200) such that all words in 1 ≤  r ≤  k are function words and all 
words with r > k are content words. As we shall show shortly, the actual choice of k does not 
affect our argument in a material way. 

We assume that the function words have a total probability mass ∑ =
= k

r rk pP
1

, (to fix 
ideas, take 0.3 ≤  Pk ≤  0.5) and that Zipf's law is really a statement about UC. Normalizing for 
the unit square, again using V(N) as our normalizing factor, sample frequencies are f(x), with 
k/V(N) ≤  x ≤  1. The following properties will always hold: 
 
(D1)  right limit,  fN (1) = 1/N 
(D2)  left limit, fN (k/V(N)) is a constant 

(D3)  area under the curve, ∫ −=
1

)(/
)(/)1()(

NVk kN NVPdxxf . 

 
To this we can provisionally add Zipf's law in the form given in (1), or more directly 

 
(6) ))).(log(exp())(( NxVBHNxVf NNN −=  
 
Condition (D1) means f(1) = exp(HN) = 1/N therefore HN  = �log(N). The logarithmic change 
in HN  corresponds to the fact that as corpus size grows, unnormalized Zipf plots shift further 
to the right ─ notice that this is independent of any assumption about the rate of vocabulary 
growth. In fact, if we use Zipf's law as a premise, we can state that vocabulary grows with a 
power of corpus size as 
 
Theorem 2. If corpora satisfy Zipf's law, grow such that assumptions (D1-D2) above hold, 
and BN  tends to a fixed Zipf's constant B, vocabulary size V(N) must grow with Nρ, ρ = 1/B. 
 
Proof. By (D1) we have Zipf's law in the form fN (x) = NBNx/1 . If  fN (k/V(N)) is to stay 
constant as N grows, N(k/V(N)) NB  must be constant. Since k (the number of function words) is 
assumed to be constant, we get log(N) + BN log(k) � BN log(V(N)) constant, and as BN  
converges to B, log(N) ~ B log(V(N)). Therefore, N = V(N)B within a constant factor. 

In our notation, ρ = 1/B, and as V(N) ≤  N, we obtained as a side result that frequency 
distributions with B < 1 are sampling artifacts in the sense that larger samples from the same 
population will, of necessity, have a B parameter ≥  1. Thus we find (Mandelbrot 1961c) to be 
completely vindicated when he writes 

 
Zipf's values for B are grossly underestimated, as compared with values obtained when the 
first few most frequent words are disregarded. As a result, Zipf finds that the observed 
values of B are close to 1 or even less than 1, while we find that the values of B are not less 
than 1 (p. 196). 
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We leave the special case B = 1 for 3.3, and conclude our investigation of high frequency 
items with the following remark. Condition (D3) gives, for B > 1, (1 � Pk)/Nρ = 

∫
1

/
)/(1

ρNk

B dxNx  = [1 � (k/Nρ)1-B]/N(1 � B). Differentiating with respect to k = xNρ gives 
B

k kkP −=∂∂ / . Therefore at the boundary between content words and function words we 
expect pk ~ 1/kB. Looking at four function words in the Merc in the range where we would 
like to place the boundary, Table 1 summarizes the results. 

 
Table 1 

B = �log(pk)/log(k) (estimates) 
 

Word Rank Frequency B 
be   30 0.0035 1.66 
had   75 0.0019 1.45 

other 140 0.0012 1.36 
me 220   0.00051 1.41 

 
The point here is not to compute B on the basis of estimated ranks and frequencies of a few 
function words, but rather to show that a smooth fit can be made at the function word 
boundary k. The proper procedure is to compute B on the basis of fitting the mid- (and 
possibly the low-) frequency data, and select a k such that the transition is smooth. As Table 1 
shows, our normalization procedure is consistent with a wide range of choices for k. 
 
 
3.3.    Low frequency items 
 
The fundamental empirical observation about low frequency items is also due to Zipf ─ it is 
sometimes referred to as his �second law� or the number-frequency law. Let us denote the 
number of singletons in a sample by V(1,N), the number of types with exactly 2 tokens by 
V(2,N) etc. Zipf's second law states that if we plot log(i) against log(V(i,N)) we get a linear 
curve with slope close to �1/2. This is illustrated in Fig. 4 below. 

Some of the literature (e.g. the web article by Landini (1997)) treats (1) and (2) as sepa-
rate laws, but really the �second law�, log(i) = KN � DN log(V(i,N)), is a straightforward 
consequence of the first, as Zipf already argued more heuristically. 

 
Theorem 3. If a distribution obeys Zipf's first law with slope parameter B, it will obey Zipf's 
second law with slope parameter D = B/(1+B). 
 
Proof. For sample size N we have fN(x) = 1/NxB, so the probability that an item is between i/N 
and (i+1)/N if i ≤  x-B ≤  i+1. Therefore we expect V(i,N) = V(N)(i-ρ  � (i+1)-ρ). By Rolle's 
theorem, the second term is ρy-ρ-1 for some i ≤  y ≤  i+1. Therefore,  
 

log(V(i,N))/(ρ+1) = log(V(N))/(ρ+1) � log(ρ)/(ρ+1) � log(y). 
 
Since log(ρ)/(ρ+1) is a small constant, and log(y) can differ from log(i) by no more than 
log(2), rearranging the terms we get log(i) = log(V(N))/(ρ+1) � log(V(i,N))/(ρ+1). Since KN = 
log(V(N))/ /(1+ρ) tends to infinity, we can use it to absorb the constant term bounded by (ρ�
1)/2 + log(2). 
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                      Fig. 4. Number-frequency law on the Merc (10m words) 

 
Discussion. The normalization term KN is necessitated by the fact that �second law� plots 
would otherwise show the same drift as �first law� plots. Using this term we can state the 
second law in a much more useful format. Since log(i) = log(V(N))/(ρ+1) � log(V(i,N))/(ρ+1) 
plus some additive constant, 
 
(7)       V(i,N) = mV(N)/iρ +1  

 
where m is some multiplicative constant. If we wish ∑∞

=
=

1
)(),(

i
NVNiV  to hold we must 

choose m to be 1/ζ(ρ+1), which is the reason why Zipfian distributions are sometimes referred 
to as zeta distributions. Since this argument assumes Zipf's second law to extend well to high 
frequency items, the case for using m = 1/ζ(ρ+1) is far from compelling, but it is reassuring to 
see that for B ≥  1 we always find a bound constant (6/π2 for B = 1) that will make the 
distribution consistent. 

Therefore we find Mandelbrot's (1961c) criticism of B = 1 to be somewhat less com-
pelling than the case he made against B < 1. Recall from the preceding that B is the reciprocal 
of the exponent ρ in the vocabulary growth formula (5). If we choose a very �rich� corpus, 
e.g. a table of logarithms, virtually every word will be unique, and V(N) will grow faster than 
N1-ε for any ε > 0, so B must be 1. The following example sheds some light on the matter. 
 
Example 2. Let L = {0,1,...,9) and our word tokens be the integers (in standard decimal nota-
tion). Further, let two tokens share the same type if their smallest prime factors are the same. 
Our size N corpus is constructed by N drawings from the exponential distribution that assigns 
frequency 2-i to the number i. It is easy to see that the token frequency will be 1/(2p � 1) for p 
prime, 0 otherwise. Therefore, our corpora will not satisfy Zipf's law, since the rank of the ith 
prime is i, but from the prime number theorem pi ~ i log(i) and thus its log frequency ~ �i 
log(i)log(2). However, the corpora will satisfy Zipf's second law, since, again from the prime 
number theorem, V(i,N) = N/i2(log(N) � log(i)) and thus log(V(N))/2 � log(V(i,N))/2 = log(N)/2 
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� log(log(N))/2 � log(N)/2 + log(i) + log(log(N) � log(i))/2, which is indeed log(i) within 
1/log(N). 

Example 2 shows that Theorem 3 can not be reversed without additional conditions (such 
as B > 1). A purist might object that the definition of token/type relation used in this example 
is weird. However, it is just an artifact of the Arabic system of numerals that the smallest 
prime in a number is not evident: if we used the canonical form of numbers, everything after 
the first prime could simply be discarded as mere punctuation. More importantly, there is a 
wealth of other easy to construct examples: as we shall see in Section 4, there are several 
standard families of distributions that can, when conditions are set up right, satisfy the second 
law but not the first one with any B > 1. 

To summarize, Theorem 3 means that distributions that satisfy (1) in the the mid- and the 
low-frequency range will also satisfy (2) in the low-frequency range. Since the observed fit 
with (2) is reasonably good, there seems to be no compelling need for a separate urn in the 
low frequency range. This is in sharp contrast to the high-frequency range, where both theo-
retical considerations and empirical observations dictate the use of a separate urn. 

 
 
3.4.     Hapax legomena and vocabulary richness 
 
At the extreme low end of the frequency distribution we find hapax legomena, types that have 
only one token. Though misspellings and other errors often end up as hapaxes, it is worth 
emphasizing that hapaxes are not some accidental contamination of corpora. In the Merc, 46m 
tokens fall into nearly 600k types, and more than 400k of these (69.8%) are hapaxes. To be 
sure, over a third of these are numbers (see 5.2), but if we remove numeral expressions from 
the corpus, we still have 44m tokens, 385k types, of which 218k (56.6%) are hapaxes, con-
sistent with the observation in Baayen (1996) that in large corpora typically more than 50% of 
the words are hapaxes. 

Using i = 1 in (7), Zipf's second law predicts that a non-vanishing fraction mV(N) of the 
vocabulary will be hapaxes, and with i = 2 we obtain that roughly a quarter as many will be 
dis legomena (types with exactly two tokens). These predictions have massive support in the 
quantitative linguistics literature: for example, Herdan (1964:219) only tabulates values of the 
Waring distribution (see 4.4 below) for the range 0.4 ≤  V(1,N)/V(N) ≤  0.6, because this range 
covers all values that �are likely to arise in practical work in the area of language�. 

Baayen (2001:2.4), following Khmaladze (1987, non vidi), defines sequences that have 
V(1,N) ∞→  as having a large number of rare events (LNRE) if )(/),1(lim NVNVN ∞→ is 
positive. For a sequence to behave as LNRE it is not necessary for a non-vanishing fraction of  
tokens be rare: in fact, by the power law of vocabulary growth V(1,N)/N will still tend to zero, 
but a positive fraction h of types are rare. As Baayen (2001: 57) notes, word frequency dis-
tributions, even when obtained from large samples, are in the LNRE zone. This observation in 
fact extends to the largest corpora currently available to researchers, web indexes comprising 
trillions of words, where the ratio of hapaxes is even higher. Assuming V(1,N) > hV(N) we 
can again use the Turing-Good heuristics (see 2.3 above) for V'(N) > hV(N)/N which, after 
integration, yields the power law (5) with exponent h. 

We can also turn (7) around and use the observed ratio h of hapax legomena to voca-
bulary size to estimate the theoretical constant m directly, the ratio of dis legomena to 
vocabulary size to estimate m/2ρ+1, and so forth. On the whole we expect better estimates of m 
from dis legomena than from hapaxes, since the latter also serve as a grab-bag for typos, large 
numerals, and other marginal phenomena (see 5.2). We can include tris legomena and in 
general use V(i,N)/V(N) to estimate m/iρ+1. Combining the observed numbers of rare words 
into a single least squares estimate for 2 ≤  i ≤  10, in corpora with at least a few million 
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words, we can actually obtain better values of the Zipf constant B = 1/ρ than by direct 
regression of log frequency against log rank. 

Clearly, any attempt to model word frequency distributions must take into account the 
large number of rare words observed, but the large number of hapaxes is only the tip of the 
iceberg as far as vocabulary growth is concerned. Tweedie and Baayen (1998) survey a range 
of formulas used to measure vocabulary richness, and argue that many widely used ones, such 
as the type-token ratio V(N)/N, fail to define a constant value. In light of the asymptotic con-
siderations used in this paper this comes as no surprise: Guiraud's R, defined as V(N)/ N , 
will tend to zero or infinity if B < 2 or B > 2 respectively. Dugast's and Rubet's k, defined as 
log(V(N))/log(log(N)), must tend to infinity. Aside from Herdan's C, the main measures of 
vocabulary richness that can be expected to converge to constant values as sample size in-
creases without bounds are Yule's K, defined as∑∞

=1
2

r rf , entropy, given by 

∑∞

=
−

1
)log(

r rr ff , and in general Good's (1953) spectral measures with Bt > 1. 
Our results therefore cast those of Tweedie and Baayen in a slightly different light: some 

of the measures they investigate are truly useless (divergent or converging to the same 
constant independent of the Zipfian parameter B) while others are at least in principle useful, 
though in practice estimating them from small samples may be highly problematic. In many 
cases, the relationship between a purely Zipfian distribution with parameter B and a proposed 
measure of lexical richness such as K is given by a rather complex analytic relation (in this 
case, K = ζ(2B)/ζ(B)) and even this relation can be completely obscured if effects of the high-
frequency function words are not controlled carefully. This important methodological point, 
made very explicitly in Mandelbrot's early work, is worth reiterating, especially as there are 
still a large number of papers (see Naranan and Balasubrahmanyan 1993 for a recent 
example) which treat the closed and the open vocabulary cases as analogous. 

 
 

4.     Alternatives to Zipf's Law 
 
The most widely used quantitative frequency laws are (1) and (2) as proposed by Zipf. But 
there are many alternatives, sometimes with easily identifiable champions, but often simply as 
communities of practice where using a particular model is taken for granted. 
 
 
4.1.     Minor variations 
 
In many cases authors simply express (1-2) using different notation but an algrebrically equi-
valent formula such as (3). A more interesting case is when the immediate behavior is slightly 
different, as in Mizutani's Expression: 
 

(8) ∑
+

=
=
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with a, b constants (Mizutani 1989). Another kind of correction to (1) was suggested by 
Mandelbrot (1961b), who introduces an additional parameter W > 0 in order to guarantee that 
the relative frequencies define a proper probability distribution for B > 1: 

 
(9) )log()log()1()1log()log( WrBWBBfr +−−+−= . 
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With this correction, ∑ ∫
∞

=

∞ −−−
0

1)1(~
r W

BB
r dxxWBf  = 1. If W is kept constant, (7) still 

leaves something to be desired, inasmuch as it assigns a total probability mass of 
approximately N(1�B)/B to the region of the curve where r > V(N), but at least this error tends to 
zero as N tends to infinity. 
 
 
4.2.     Beta 
 
Many kinds of minor corrective factors would be compatible with the available empirical 
evidence, but not all of them show acceptable limit behavior. A case in point is the beta 
distribution, which Simon (1955) obtained from a model of text generation embodying two 
assumptions: (i) new words are introduced by a small constant probability, and (ii) old words 
are reused with the same probability that they had in earlier text. He gives the resulting 
distribution in the form 
 
(10) )1,(),( += ρiABNiV  
 
where B is the Beta function. The parameter ρ is the same as in Zipf's laws, as can be seen 
from comparing the estimates for V(i,N)/V(i+1,N) that can be obtained from (7) and (10). In 
particular, the case ρ = 1 corresponds to Zipf's original formulation of the law as V(i,N)/V(N) 
= )].1(/[1 +ii  

But Simon's assumption (i), linear vocabulary growth, is quite problematic empirically. 
One example used in Simon (1955) and subsequent work is Joyce's Ulysses. The general 
claim of V(N) = αN is made for Ulysses with ≈α  0.115. However, instead of linear voca-
bulary growth, in Ulysses we find the same power law that we have seen in the Merc (cf. 
Fig. 3 above). To be sure, the exponent ρ is above 0.82, while in the Merc it was 0.75, but it is 
still very far from 1. Leaving out the adjacent chapters Oxen of the Sun and Circe we are left 
with roughly three-quarters of Ulysses, yielding an estimate of α  = 0.116 or ρ = 0.825. 
Applying these to the two chapters left out, which have 62743 words total, we can compute 
the number of words in  Ulysses as whole based on αN, which yields 31122, or based on Nρ, 
which yields 29804. The actual number of different words is 30014, so the error of the linear 
estimate, 3.7%, is over five times the 0.7% error of the power law estimate. 

The Shakespeare canon provides another example of a �closed� corpus that displays open 
vocabulary growth. Plotting log(n) against log(V(n,N)) as in Figure 4 yields Figure 5 (see 
below). A least squares estimate of ρ at the tail end of the curve yields about 0.52, quite far 
from unity. If we restrict ourselves to the very tail, we obtain 0.73, and if we use (7) we get 
0.76, numbers still very far from what Simon considers the range of interest, �very close to 
1�. To summarize, the beta distribution is not an adequate model of word frequencies, because 
it assumes too many words: linear vocabulary growth instead of the power law observable 
both on dynamically growing corpora such as the Merc and on static ones such as Ulysses or 
the Shakespeare canon (for separate power law counts on Antony and Cleopatra and Richard 
III  see Turner 1997). 
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Fig. 5. Number-frequency law on the Shakespeare canon (885k words) 

 
 
4.3.     Lognormal 
 
Another class of distributions that has considerable support in the literature is the lognormal 
family (Herdan 1960). As Champernowne discovered, the same genesis that leads to Pareto's 
law, when the assumption on minimum wealth is removed, will lead to a lognormal 
distribution instead. In word frequency counts, the resolution of the corpus presents a 
minimum barrier (everything that appears must appear at least once), but those in favor of the 
lognormal hypothesis could argue that this is an artifact of the counting method rather than a 
structural property of the data. 

Theorem 1 proves that under reasonably broad conditions V(N) ∞→ , meaning that the 
average frequency, 1/V(N), will tend to zero as sample size increases. But if average 
frequency tends to zero, average log frequency will diverge. In fact, using Zipf's second law 
we can estimate it to be �log(N) within an additive constant R. As the following argument 
shows, the variance of log frequencies also diverges with 2/)log(NB . To see this, we need 
to first estimate f´N(k/V(N)), because the functional equation for lognormal distribution, 
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contains this term. Using the difference quotient we obtain pk+1 � pk/V(N), and we have V(N) = 
Nρ  for some constant ρ < 1. By Zipf's law log(fN(x)) = �log(N) �B log(x). Using (D2) we get 
that 
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is constant, which can hold only if ρ log(N) = (1/2)log(N)2/ 2

Nσ   i.e if 2
Nσ  = (B/2)log(N). 
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In other words, the lognormal hypothesis does not lead to a stable limiting distribution: 
the means drift down with log(1/N) and the standard deviations open up with )log(N . This 
latter divergence, though theoretically more significant than the divergence of the means, is in 
practice barely noticeable when N grows with the current computational limits of corpus size: 
the predicted difference between a hundred million word corpus and a ten billion word corpus 
is less than 12%. 

Proponents of the lognormal law could object to the above derivation, pointing out that 
once we assume that Zipf's first law fits the midrange ερε −<< NiN  and Zipf's second law 
fits the low range, surely the lognormal can not be expected to fit well. (In the high range, 
introducing a separate urn would benefit the lognormal approach just as much as it benefits 
the Zipfian.) We should, they might argue, turn the tables and see how well the Zipfian would 
fit, once we assume the underlying distribution to be lognormal. Because the results would be 
incompatible with Zipf's laws, the only means of settling the debate is to investigate which of 
the competing hypotheses fits the data better. Since the fit with lognormal is about as good (or 
about as bad, depending how we look at it) as with dzeta, there could be no compelling reason 
to favor one over the other. 

While it is true that estimates on the divergence of the lognormal parameters are hard to 
quantify in the absence of an assumption that the distribution is Zipfian at least to the first 
approximation, for lower N the divergence is quite strong, and has been noted even by leading 
proponents of the lognormal hypothesis. Carroll (1967:407) has this to say:  

 
It will be noted that the mean and the standard deviation vary systematically as a function 
of sample size; that is, they appear to be biased estimates of the population value. [...] In 
ordinary sampling theory no bias is expected in the usual measures of central tendency 
applied to samples of different sizes, and the bias in estimates of the population variance is 
negligible for large samples and is easily adjusted for by using the number of degrees of 
freedom as the denominator in the calculation of variance. 
 

Whether this bias is a barely perceptible lack of fit with the data or a gaping hole in the theor-
etical edifice is a matter of perspective: Herdan (1964:85) repudiates the lognormal largely 
because �for samples of widely different sizes from the same universe, the conventional 
statistics, such as the mean and the standard deviation, would not be the same�. The main 
problem with the lognormal is the exact opposite of the problem with beta: beta distribution 
assumes there to be too many different words, while lognormal requires there to be too few. 
This problem is quite independent of the numerical details of curve-fitting: a lognormal 
distribution with fixed means µ and variance σ2 predicts a fixed V(N) = exp(σ2/2 � µ), which 
Carroll (1967) calls the �theoretical absolute size of the vocabulary�. But a fixed upper limit 
for V(N) is incompatible with the results of our Theorem 1, and more importantly, with the 
empirically observable power law of vocabulary growth. 
 
 
4.4.     Waring 
 
In a series of influential publications Herdan (1964, 1966) described an alternative to Zipf's 
law based on the Waring distribution. The basic idea is to model the classes Ci of types that 
have exactly i tokens: the Waring-Herdan formula asserts that the probability of a type falling 
in class Ci  is given by 
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To account for the case when a token belongs to no previously seen type, the model explicitly 
contains the class C0 of words not found in the sample, and assigns probability to it by the i = 
0 case of the same formula (12). Instead of the number of visible types V(N) we therefore deal 
with the total number of types U(N) which includes the unseen words as well. 

Let us first estimate the appropriate value for α and β. By Zipf's second law, we have 
V(i,N)/V(i+1,N) = (1+1/i)ρ+1, with ρ is a constant < 1. From (12) we get V(i,N)/V(i+1,N) = 
(β+α+i +1)/(β+i). Therefore we need  

 

ii
11~11 ++

+
++ ρ

β
α  

 
 which can work well for a range such as 2 ≤  i ≤  200 only if α is close to ρ and β is close to 
zero. With this choice, we actually obtain the correct prediction, namely that class C0 has 
probability one, meaning that almost all types in the population remain unseen in any sample. 

Again, proponents of the Waring distribution could object to the above derivation, 
especially as it assumes Zipf's second law to provide a reasonable first approximation over a 
broad range, while in fact the fit in this range is far from perfect. We will therefore use 
Herdan's own estimators for α and β, which are based on the proportion of hapaxes, h = 
V(1,N)/V(N) and on the average class size M = N/V(N) as follows: 
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In the larger Merc samples, 1/M is already less than 0.01, and if we increase N without 
bounds, 1/M will tend to zero. Thus for very large samples Herdan's estimators yield β = (1�
h)/h and α = 1. Thus we obtain a distribution with a single parameter p, which predicts that in 
any sample the chances of a random type being manifested as hapax legomena, dis legomena, 
tris legomena etc. are 
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These probabilities do not add up to one: the remaining probability, which is p, is assigned to 
unseen word types. Of course, the whole notion of equiprobable selection of types makes 
sense only if there is a finite number of types (closed vocabulary): what (13) predicts is that 
V(N)/U(N), the proportion of visible types among the �theoretical absolute� number of types, 
is 1�p. 

One way of putting this result is that even if there are infinitely many word types, on the 
basis of a finite sample, with V(N) manifest types, we can justify no more than V(N)/(1�p) 
types altogether. This is not dissimilar to the logic underlying the lognormal fit, and in some 
sense even better, since the lognormal parameters µ and σ diverge as ∞→N , but the Waring 
parameters α and β appear to converge to stable values 1 and (1�h)/h respectively. Since h, the 
proportion of hapaxes among the total number of word types seen, is about 1/2, we can 
conclude that there are roughly as many unseen types as there are visible ones. 

Herdan uses h to estimate p, but of course we could apply least squares fit in the entire 
range of pi. From (13) we obtain V(i,N)/V(i+1,N) = 1 + 2p/(1 + ip � p), which will be the same 
as the Zipfian estimate 1 + (ρ + 1)/i just in case ρ = 1/B = 1. Again, both the Waring and the ζ 
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distributions fit the observed numbers about equally well for small i, and both leave a lot to be 
desired for larger i. Therefore, the choice between the two has to be made indirectly, based in 
this case on the inability of the Waring distribution to support a Zipfian tail for the case of 
practical interest, B > 1. 

 
 

4.5.     Negative binomial 
 
Another influential model originates with the work of Fisher (1943) on species abundance. 
The main relation can be formulated as 
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which is closely related to both (10) and (12). If (12) is to agree with (7) over a broader range, 
we need 
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which requires γ to be close to 1 and α to be close to �ρ. For example, Efron and Thisted 
(1976) fits a negative binomial to the Shakespeare data depicted in Figure 5, obtaining γ = 
0.9905, α = ─0.3954. This translates into an estimate of ≈ρ 0.4, much lower than the 0.73 
we obtained in 4.2 based on V(1,N)/V(2,N) alone, and still significantly lower than the 0.52 
we obtained from the first five V(i,N). Because their method gives nearly uniform weight to 
the whole range 1 ≤  i ≤  40 they consider, the discrepancy is quite visible, but for the same 
range our simpler fit would yield ρ = 0.36. Since Theorem 2 indicates that vocabulary growth 
is determined at the margin, we concentrate at the low end, ignoring values for i > 5 entirely. 

In general, the negative binomial offers a considerably better fit than Zipf's second law, 
and in the range of interest, �1 < α <0, yields the same vocabulary growth formula 
 
(15) NNVNV /),1()( =′  
 
as the Turing-Good method, but without assuming a uniform prior on types. As we have seen 
in 3.2, V(1,N) = mV(N) for some constant 0 < m ≤  1. Combined with (15) we obtain, up to a 
constant factor, the power law (5) with exponent m. For the Shakespeare canon, m = 0.46, 
roughly halfway between the exponent predicted by (14) and the one computed from 1 ≤ i≤ 5. 
 
 
5.     Where do the words come from? 
 
The closed vocabulary assumption, that there is a fixed number of words S in any given 
language, is often couched in terms of rather sophisticated statistical frameworks that assume 
the existence of unseen words. After discussing this issue in 5.1, we turn to the open 
vocabulary in 5.2, where we attempt to identify the factors fueling infinite vocabulary growth. 
We offer our conclusions in 5.3. 
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5.1.     Unseen words 
 
The lognormal and Waring distributions are examples of a broader class of hypotheses that 
require a distinction between the observed number of types V(N) and the predicted number of 
types U(N). In some sense, this is a very attractive distinction, for it would surely be absurd to 
assume that no new sample will ever contain words hitherto unseen. Also, on the basis of such 
hypotheses, we can obtain quantitative answers to a range of questions: 

 
What proportion of first names known in small villages are actually in use there? Over 
80%, according to the Waring fit used in Schubert and Toma (1983). 
 
How many words could be used in children's reading materials between grades 3 and 9? 
609,606, according to the lognormal fit used in  Carroll (1971). 
 
How many words did Shakespeare know but never use? At least 35,000, according to the 
negative binomial fit used by Efron and Thisted (1976). 
 
How many words can appear in Turkish archeological texts given a sample of 7k words? 
Over half trillion, based on the generalized inverse Gauss-Poisson fit used in Baayen 
(2001:4.3.1). 

 
It is quite conceivable that in rural Hungary first names were indeed drawn from a rather 
small closed set, and therefore fitting a Waring or lognormal distribution is appropriate. 
However, the statistics published in Carroll (1971) give no indication that children's reading 
materials come from a closed subset of the vocabulary, and extrapolationg by (7) suggest that 
it would take less than 20 times the current corpus to transcend the 609,606 types predicted by 
the lognormal fit. 

While the third question seems to be about Shakespeare's mental lexicon, in fact Efron 
and Thisted (1976) posed it in a more conservative fashion: how many new words ∆(t) do we 
expect if a new body t times the size of the currently acknowledged Shakespearean canon was 
discovered? We are certainly in no position to collect 20 times the available Shakespearean 
corpus (for t = 0.0004849 see Thisted and Efron 1987) so let us for the moment pursue the 
issue based on the Merc. 

The hope is that by fitting a Waring distribution, we can describe how many words are 
known by the journalists at the Merc. In the first sample, N = 147,260, we estimate U(N) by 
V(N)/(1 � V(1,N)/V(N)), obtaining U(N) = 35,439. However, in an independent sample of 
587k tokens, we find more than this, 38,865 types. For this sample the Waring estimate is 
U(N) = 113k. However, in an independent sample of 4.7m words we find V(N) = 127k and 
U(N) = 280k, but we are just as far from the elusive �theoretical absolute size� as we were 
before, and in an independent sample of 18.3m words indeed we find 310k different words. 

What is fueling all this vocabulary growth? If indeed ∞→)(NV  as sample size grows, 
the answer can not be that the Merc employs, say, a hundred journalists: for the total to come 
out infinitely large, at least some of them must already know infinitely many words. We are in 
no position to study the Merc contributors separately, but wherever such studies have been 
conducted, as on the output of Chaucer, Shakespeare, or Joyce, the same unlimited pattern of 
vocabulary growth can be seen. In fact, Efron and Thisted (1976) are quite explicit about the 
fact that their model predicts ∞→∆ )(t  as ∞→t , they just somehow find this conclusion 
unpalatable (perhaps because it would make no sense for the case of species abundance that 
originally gave rise to the model). 

From what we have seen so far, not only do writers have infinite vocabularies, they 
actually provide evidence of this in the (necessarily finite) corpus of their writings. Further, 
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this conclusion must hold not only for extraordinary literary geniuses but, by the pigeonhole 
principle, at least for some of the lesser known journalists toiling at the Merc. 

 
 

5.2.     Mixtures 
 
A natural generalization of the Zipfian model is to assume that we have a mixture of Zipfians: 
instead of a single distribution with parameter B we have k independent distributions with 
parameters kBB ,,1 L . In such cases, it follows from Theorem 2 that vocabulary growth will 
always be dominated by the smallest Bi. One application would be to separate the individual 
writers of multi-author corpora and inspect their contribution to the overall vocabulary sepa-
rately. Another application is to look at different classes of words, such as morphologically 
simple vs. morphologically complex, written using digits vs. letters, etc. For example, we may 
assume that only 98% of the Merc data are ordinary words, and the remaining 2% are 
numbers. If we separate the two corpora, indeed we obtain quite different parameters: Bw = 
1.65 for words and Bn = 1.31 for numbers. Assuming the power law (5), this means that for 
corpora with 385m words and beyond, the number of new number types will exceed the 
number of new word types, even though the number of new number tokens will still be only 
2% of the number of new word tokens. 

While it is true that the distribution of numbers in the Merc follows the same broad 
Zipfian patterns as the distribution of words, we certainly do not need an elaborate statistical 
argument to prove that the number of numbers is infinite, or that writers know infinitely many 
numbers. To the contrary, our goal here is to protect the conclusion, that vocabulary is open, 
against the counterargument �yes, but only because it includes numbers�. In fact, if we 
remove numbers, we still find the same Zipfian pattern, and vocabulary growth still obeys the 
power law (5), though with a smaller exponent. 

If we inspect the non-numerical hapaxes more closely, we find that other obviously in-
finite sources, such as proper names, foreign words, typos and eye-dialect (e.g. 
Arrrrrrnnnnnold) play a significant role. Again we need to assign these to separate mixture 
components, and argue that the rest still grows without bounds. Remarkably, at this point the 
bulk of the vocabulary growth is actually provided by productive morphological processes: 
about 40% of the non-numeric hapaxes are hyphenated, a clear sign of compounding, and 
over 7% end in the possessive suffix 's. Multiply suffixed forms, such as eclectically or  
ebonizing provide about 5%, so at 40m words the majority of non-numeric hapaxes are either 
monomorphemic English words such as decade or polymorphemic, but clearly well-formed 
English. To the extent that numerals freely enter into combination with nouns to form 
adjectives such as 958-member, one could even argue that there is no need to treat numbers, 
proper names, or even foreign words as extragrammatical, but we leave this matter to the side 
here, as the inclusion of these classes would no doubt weaken our argument in the eyes of 
many. 

 
 

5.3.     Summary and conclusions 
 
In this paper we answered the question posed in the title by arguing that there are an infinite 
number of words. We came to this conclusion not on the basis of productive morphological 
processes, but rather by inspecting the characteristic properties of large corpora, and deriving 
the open vocabulary result from these properties. Nevertheless, our results support the 
conclusion that the main grammatical source of infinite vocabulary growth is productive 
generative morphology, in particular compounding. 



András Kornai 

 

84 

We inspected Zipf's law separately for the high-, mid-, and low-frequency ranges. For the 
high-frequency range we proposed that a separate urn, containing only a few dozen to a few 
hundred function words, be used, and argued that this urn will contain somewhere between 
30% and 50% of the total probability mass. For the mid- and low-frequency range we noted 
that the frequency plot is log-covex (subgeometric mean property) and that every corpus has 
hapaxes. Using these properties and a simple normalization technique we proved in 
Theorem 1 that vocabulary size V(N) tends to infinity as ∞→N . 

It is in the middle range that Zipf's law appears strongest, and here estimates of the Zipf 
constant B clearly give B > 1 which corresponds, as we have shown in Theorem 2, to a 
vocabulary growth rate V(N) = N1/B. Theorem 3 established a simple quantitative connection 
between Zipf's first and second law, suggesting that there is no need to introduce a separate 
urn for the low range, especially as the B of this urn, were it lower than the B of the mid-
frequency urn, would dominate the whole distribution for large N. If separate urns are needed 
at all, they should be used for numerals, typos, eye-dialect, direct quotations form other 
languages, and other arguably extragrammatical material that can be seen as contaminating 
the basic vocabulary pattern. 

Altogether, there appears to be considerable empirical support for the classical Zipfian 
distribution with B >1, both in the Merc and in standard closed corpora such as Ulysses. There 
seems to be no way, empirical or theoretical, to avoid the conclusion that vocabulary size 
grows approximately with a power ρ < 1 of N, and the most widely used competing 
hypotheses, in particular the beta, lognormal, and Waring distributions, are not well suited for 
characterizing the observed pattern of word frequencies. The negative binomial, with α 
negative and γ close to 1, stands out as a realistic alternative to ζ, though a satisfactory 
genesis, explaining why the cumulative distribution function of the Poisson parameters should 
follow Γ, is still lacking. 
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