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Abstract
We study a typical intermediary task to Machine Translation, the alignment of NPs in the bitext. After arguing that the task remains
relevant even in an end-to-end paradigm, we present simple, dictionary- and word vector-based baselines and a BERT-based system. Our
results make clear that even state of the art systems relying on the best end-to-end methods can be improved by bringing in old-fashioned
methods such as stopword removal, lemmatization, and dictionaries
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1. Introduction
As the state of the art in machine translation (MT) is now
dominated by end-to-end (e2e) neural architectures, the
task of aligning phrases of parallel corpora has been ne-
glected. In fact, the tides have turned to such an extent that
discovery of intermediate structure, hitherto the standard
approach, now requires special justification. Since this is
obviously not the place to survey the entire state of the art,
we confine ourselves to a few remarks, beginning with the
obvious: e2e, at least as currently practiced, is not structure
free.
In MT, e2e systems are built on two pivotal structures: the
segmentation of the speech stream into sentences, and the
segmentation of the sentences into words. As we shall see,
the arguments in favor of these structural levels apply, with
the same force, to the intermediary level that is our chief
concern here, phrases. One simply cannot train MT sys-
tems without sentence-aligned corpora (our point (1) be-
low), and the embeddings that both e2e and more modular
systems rely on assuming subsentential units such as words,
word-parts, or characters (our (2) below). Training a truly
e2e system on naturally occurring speech streams (seq2seq
transformation of acoustic frames) is not on the horizon.
While somewhat obscured by the fact that the segmentation
effort is hidden in the preprocessing, there is no denying
that e2e, as practiced today and in the foreseeable future,
fundamentally relies on conventionally built structures that
already pre-package a great deal of the structural informa-
tion linguists take to be relevant. To be sure, characters are
not exactly phonemes, and word pieces are not exactly mor-
phemes, but the expectation is that the better these systems
become the more the units (which in the e2e paradigm have
to be teased out of the system by specialized probes) will
resemble phonemes, morphemes, etc.
In this paper we argue that using traditional, structure-based
thinking, even about tasks such as MT that seamlessly fit
the e2e paradigm, can lead to improvements in the state
of the art. In the rest of this Introduction, we enumerate
what we see as the main reasons for positing intermediate
structures. We describe our data in Section 2.; the tradi-
tional and contemporary methods in Section 3.; and in Sec-
tion 4. we present the results that justify our conclusion
that hybrids using both traditional and modern components
improve performance.

1. Structure facilitates data gathering. Since the data
generally follows Zipf’s Law, there is a non-negligible
heavy tail that requires one-shot or even zero-shot
learning. This is especially clear in MT, where data
must be aggregated in word or subword units for train-
ing, but there are many other problems, even MT for
low-resource languages, where we simply don’t have
sufficient data for taking full advantage of e2e capa-
bilities.

2. Structures subdivide the task. For any sequence la-
beling task that transform some sequence ri of input
units to some sequence tk of output units, to the ex-
tent some intermediate layer of representation sj can
be established, this subdivides the task into two trans-
formations that are both individually better learnable
than their convolution. Further, in cases where the sj
are linguistic signs, linking sound and meaning in an
arbitrary fashion, no gradients can reasonably be ex-
pected to flow through the sj .

3. Structures are multifunctional pivots. Those structures
that are treated as standard in linguistics generally
have relevance for several domains, not just sound and
meaning. For example, the state-of-the-art (SOTA)
object recognizer, YOLO9000 (Redmon et al., 2016),
structures visual images by words and phrases, and in
the cognitive science literature (Rosch, 1975; Lakoff,
1987; Gärdenfors, 2000) it has long been argued that
meanings extend to other sensory domains (vision in
particular) by means of prototypes.

In tasks like captioning (Karpathy et al., 2014) reasons
(1-3) appear together: the tail is so heavy that for the
most part even one-shot learning is out of the ques-
tion, gradients don’t flow through, and practically all
results have to be assembled compositionally from in-
termediate structures.

4. Structures facilitate explanation. By their very na-
ture, e2e systems are black boxes, but there are many
situations where ethical and practical considerations
demand a human-understandable explanation why the
system made a particular choice. Generally, tracing
through different levels of representation goes a long
way toward the eXplainable AI (XAI) goal.
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5. Structure facilitates debugging Closely linked to our
previous point, e2e systems, especially those driving
the state of the art, typically embody the work of
many people and often millions of GPU hours. In
other fields of engineering we rarely encounter major
systems that do not include some sort of inspection
hatches and instrumentation for human observers, and
it goes against the grain of centuries of engineering
experience to assume that here is a situation where we
could do without.

Let us briefly consider how the points made here apply
to phrases. 1. Phrases follow Zipf’s law. 2. Identified
phrases clearly subdivide the translation task. This is espe-
cially transparent for named entities (NEs) which, as fixed
units, generally do not require translation. For example the
English LOC San Diego is translated to Hungarian as San
Diego rather than Szent Jakab, which would be the correct
translation for PER (but the person is called Saint James the
Great in English, where San Diego or Santiago is restricted
to LOCs).

As for 3, phrases are units in phonology both in terms of
driving intonation contours and in terms of pauses/breath
groups; in grammar, where verbal complements like sub-
jects and objects are expressed in terms of phrases; in syn-
tax, where rigid phrase-internal word order is often seen
even in otherwise “free word order” languages; and in se-
mantics, where phrases often designate entities in a non-
compositional fashion, e.g. Action Française doesn’t re-
fer to some kind of French action but rather to an ultra-
right political movement. In particular, integration with
knowledge-based systems is virtually impossible without
NE keys.

Finally, for 4-5, in the course of this work we have no-
ticed that cases of phrase mismatch are predictive of Google
Translate errors. Our corpus is Orwell’s 1984 (see Sec-
tion 2.), which contains sentences like It was part of the
economy drive in preparation for Hate Week, with gold
translation Ez is része volt a takarékossági versenynek,
amellyel a Gyűlölet Hetére készültek.

On the whole, Google Translate does a commendable job
of translating the Hungarian back to English. But when our
aligners (see Section 3.) fail, we are more likely to see a
translation failure, something that affects the meaning, not
just the style. Here we get This was also part of the auster-
ity competition that was being prepared for Hate Week. In
the original, and in the Hungarian gold translation, we have
the subject It (translated back as This – we don’t consider
this an error), the goal Hate Week, and the object economy
drive (translated back as austerity competition – again we
don’t consider this an error). However, in the original the
subject is in preparation of the goal, whereas in the Google
translation it is the entire object that is in preparation.
The distinction is subtle, but errors of this kind generally
escalate to a full failure in semantic tasks like recognizing
textual entailment (RTE) (Dagan et al., 2006), see also
https://aclweb.org/aclwiki/Textual Enta-
ilment References.

2. Data
Our core data set, a manually translated and word-aligned
corpus of Orwell’s 1984, was created as part of the
MULTEX-East project (Erjavec, 2004). A phrase-level
alignment between English and Hungarian noun phrases
(NPs) (Recski et al., 2010) was presented in 1. This dataset
contains 6567 sentence pairs, or bi-sentences, with 25,561
English and 22,408 Hungarian NPs. Only NPs that are not
contained by a higher level NP (i.e. top-level NPs) are an-
notated. By today’s standards, the dataset is tiny, but as
we noted in (Recski et al., 2010), “NP alignment is a chal-
lenging problem, capable of rapidly exposing flaws both in
the word-alignment and in the NP chunking algorithms one
may bring to bear”. There, the same dataset was used to
train and test a GIZA-style aligner (Och and Ney, 2003)
which carried most of the workload, while here the bulk of
the work is carried by the independently trained MUSE and
BERT, with the corpus used only for adaptation. But for
tasks involving low resource languages, and languages with
a great deal of morphology (the two often come hand in
hand, though we consider Hungarian to be medium-, rather
than low-resourced) it is not just stemming, but also the
case marking that decides which NP fills which slot, remain
relevant.
While the task of NP alignment usually involves aligning
NPs in a bi-sentence and possibly based on wider context,
in this paper we reduce it to the simpler task of deciding for
a pair of NPs whether they should be aligned or not, based
only on the NPs itself and knowledge of the fact that they
are within the same bi-sentence. We therefore extract all
alignment candidates from the 1984 corpus, i.e. all pairs
of English and Hungarian NPs such that their sentences are
translations of each other, along with a ground truth label
indicating whether these NPs should in fact be aligned with
each other. The entire dataset contains 121,783 NP pairs
(or 18.5 per sentence) of which 18 789 (2.9 per sentence)
are labeled as alignment pairs.
To experiment with a simple rule-based solution we used
dictionaries from (Ács et al., 2014)(Ács et al., 2013)2

and (Kornai and Tóth, 1997)3 as well as the MUSE mul-
tilingual word embeddings (Conneau et al., 2017)(Con-
neau et al., 2017)4 and by training a simple classifier
based on BERT representations (Devlin et al., 2018).5

All systems described in this paper, as well as all scripts
necessary to reproduce our results are available under
an MIT license at https://github.com/adaamko/
np_alignment.

3. Methods
3.1. MUSE
Our simplest method evaluates the similarity of pairs of En-
glish and Hungarian noun phrases by mapping their words

1https://hlt.bme.hu/en/resources/
1984-corpus

2https://github.com/juditacs/wikt2dict
3https://hlt.bme.hu/en/resources/hokoto
4https://github.com/facebookresearch/MUSE
5We use the PyTorch implementation https://github.

com/huggingface/transformers

https://github.com/adaamko/np_alignment
https://github.com/adaamko/np_alignment
https://hlt.bme.hu/en/resources/1984-corpus
https://hlt.bme.hu/en/resources/1984-corpus
https://github.com/juditacs/wikt2dict
https://hlt.bme.hu/en/resources/hokoto
https://github.com/facebookresearch/MUSE
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers


3630

to the universal embedding space of MUSE vectors. We
obtain bag-of-words representations of NPs by removing
stopwords using NLTK(Bird et al., 2009) and lemmatize
using spacy(Honnibal and Montani, 2017) for English and
emmorph(Novák et al., 2016) for Hungarian. We leave un-
changed NPs that contain only stopwords. Then, let (E,H)
denote sets of MUSE vectors corresponding to the words
of any pair of English and Hungarian NPs belonging to the
same bi-sentence. We approximate the likelihood of align-
ing the two NPs by the maximum cosine similarity between
any two words of the two NPs:

S(E,H) = max
(wE ,wH)∈E×H

wEwH

|wE ||wH |
When aligning NPs of a sentence pair, we add edges be-
tween all pairs of NPs where the above similarity is above
a given threshold. Based on the baseline’s performance on
the training dataset, we set this threshold to 0.46. Figure 1
shows precision, recall, and F-score values on the training
set as a function of the threshold.

Figure 1: Performance of the MUSE baseline on the train-
ing at various thresholds

If all the words in an NP are outside the embedding’s vo-
cabulary (OOV), we add an edge iff there’s at least one pair
of English and Hungarian words whose Levenshtein dis-
tance is less than 4. This fallback slightly improves recall
by matching pairs of proper nouns such as Oceania and
Óceánia. We shall use the same fallback for OOVs in our
dictionary-based method described in Section 2..

3.2. BERT
Our second method maps English and Hungarian NPs to
vectors using the multilingual BERT language model. For
each pair of NPs in a bi-sentence, we obtain a BERT
sentence embedding by concatenating the two sentences
(with a sentence boundary symbol in-between) before us-
ing them as input to the pretrained BERT model and ex-
tracting weights by summing up its last 4 hidden layers.
Finally, we keep only vectors corresponding to words of
the two NPs and feed them into an LSTM layer (Hochre-
iter and Schmidhuber, 1997), the output of which is then
used by a linear layer that predicts the probability of the
two NPs being aligned. As loss function we used nega-
tive log likelihood loss, the classifier was trained using the
Adam optimizer, with a starting learning rate of 0.01 and
early stopping to avoid overfitting. Since there are approxi-
mately 6 times more negative samples in the data than true

Method Precision Recall F-score

always yes 15.43 100 26.73
surface 22.30 38.27 28.18
MUSE 63.51 66.29 64.87
MUSE+surface 63.52 67.96 65.66
BERT 67.06 77.20 71.77
Dict 77.49 72.01 74.65
Dict+surface 78.08 76.66 77.36

Table 1: Maximum precision, recall and F-score of the sys-
tems.

edges, we experimented both with weighted loss functions
and with over- and under-sampling. The best results were
achieved by oversampling positive examples.

3.3. Dictionary-based alignment
Our dictionary-based system uses English-Hungarian trans-
lation pairs from the Wikt2dict and Hokoto dictionaries de-
scribed in Section 2.. For each NP pair we first perform
stopword filtering and lemmatization as described in 3.1.,
then retrieve the list of all Hungarian equivalents for all
words of the English NP. Then, if there is any pair of words
in the two NPs such that the Hungarian word is among the
translations of the English word, we add an alignment edge
between the NPs. For words that are at least 5 characters
long, a Levenshtein distance not greater than 3 is enough for
the words to be considered a match. Our initial experiments
let us determine these parameters and that best results are
achieved if even a single pair of corresponding words trig-
gers adding an alignment edge between the two phrases.
For words not in the dictionary (OOVs) we fall back to the
surface-based baseline described in Section 3.1..

4. Results
We split the set of labeled NP pairs extracted from the 1984
dataset into train and test portions. The training dataset was
used to train the BERT-based system as well as to find opti-
mal parameters of the other two baselines. The test dataset
contains 24,357 NP pairs, of which 3,758 (15.43%) are con-
nected by a gold alignment edge. Table 1 shows the perfor-
mance of each system introduced in Section 3.. In case
of MUSE and the dictionary-based methods, we tested the
systems with and without the surface-based baseline as a
fallback for OOV words. We also evaluate this baseline
on its own (surface) and the system that would align all
NP pairs within a bi-sentence (always yes). The dictionary-
based method with fallback yields the highest performance
with an F-score of 77.36.
Next we experimented with various voting schemes, i.e
simple rules to determine final labels based on the labels
provided by some subset of our systems. Table 2 shows the
results on the three combinations that outperformed indi-
vidual systems on at least one figure of merit. Combining
BERT and Dict+surface by AND and OR, i.e. adding edges
between NPs iff at least one or iff both systems decided to
do so, yield very high precision and recall values, respec-
tively. This indicates that the two systems, while achiev-
ing comparable performance on their own, actually iden-
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tified quite different subsets of edges; in fact, they assign
the same label to only 88.2% of all edges. Also, this pro-
vides us with systems that can achieve over 90% precision
or recall in scenarios where one is to be favored over the
other. The best overall results are achieved by majority vote
among the three systems, yielding an F-score of 80.51.

Method Precision Recall F-score

BERT ∨ Dict+surface 62.61 90.77 74.10
BERT ∧ Dict+surface 92.33 63.09 74.96
3-way vote 82.30 78.79 80.51

Table 2: Performance of hybrid systems

5. Conclusion
The results presented in Table 2 make clear that even SOTA
systems relying on the best e2e methods can be improved
by bringing in old-fashioned methods such as stopword re-
moval, lemmatization, and dictionaries. Since the effec-
tiveness of these methods has been known for decades (for
stopwords, see (Luhn, 1959); for lemmatization see (Porter,
1980); and for dictionaries see (McNaught, 1988; Miller,
1995)) our results are hardly surprising, except for clearly
going against the grain of the prevailing e2e philosophy.
The fact that such methods actually improve SOTA systems
has already been observed (Lauscher et al., 2019; Zhang et
al., 2019), and the value of intermediate representations has
been eloquently argued (Bengio et al., 2013). But the main
implication, somewhat unpleasant for e2e, that there is still
a great deal of value in painstakingly built gold resources,
has not been fully drawn.
We conclude with a simple prediction: on cross-modal
tasks, whether the non-linguistic modality is logic, as in
RTE; image, as in object labeling; audio, as in speech
recognition; or video, as in sign language recognition; in-
termediate representations remain essential, since gradients
will not cross the modality barrier. Since robotics involves
many such tasks, NLP is better off by building incremen-
tally on the results of earlier paradigms.
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