Spreading activation in language understanding

David Nemeskey, Gabor Recski, Marton Makrai, Attila Zséder, Andras Kornai
HAS Computer and Automation Research Institute
H-1111 Kende u 13-17, Budapest
{nemeskey, recski,makrai, zseder, kornai}@sztaki.mta.hu

Abstract

We describe our implementation of a natu-
ral language understanding capable of act-
ing on fragmentary input. The key building
blocks of our system are generalized finite
state automata which contain both syntactic
and semantic information about the words and
larger constructions, regulating the interaction
of these

1 Introduction

This paper describes a simple word-driven architecture
for a dialog system capable of acting on the kind of
fragmentary input that pervades naturally occurring di-
alog between humans in service encounters. Our sys-
tem follows in the tracks of widely deployed finite state
analyzers such as SRI’s FASTUS (Appelt 1993) and the
Xerox chunkers (Grefenstette 1999), but integrates the
syntactic and semantic subsystems so tightly that there
is no need for a separate control structure interleaving
the two.

While the ATIS corpus (Hemphill et al., 1990) was
already collected in a Wizard-of-Oz paradigm to en-
courage natural interaction, here we went a step further
and recorded actual requests made to a human ticket
clerk at a railroad station. The resulting Hungarian
Railroad Co. (MAV) corpus is dominated by fragments
such as ‘please give me a ticket from here to God with
a pensioner discount’” wherein only the bolded parts
were actually produced, the rest had to be inferred.
This task apparently caused no difficulty to the person
behind the counter: over 90% of the requests were ful-
filled without any need for clarification.

We use an asynchronous communication system
with three component types. Plugins provide inter-
faces to the services that the system needs to access.
These objects implement an abstraction layer that en-
ables handling a web search engine, such as that of
Wikipedia, in the same way as a NLP tool on the lo-
cal machine. Plugins work on a request-response ba-
sis, and are by default stateless. Agents represent au-
tonomous components in the system — they are similar
to plugins, except that they can initiate communication
by themselves. Each user is represented by an agent ob-
ject, which provides a text-based conversation interface

to the system. Other active external components, such
as cameras, could also be wrapped into agents. Finally,
there are the syntacto-semantic components, called ma-
chines, which correspond both to stored morpheme-
and word-sized lexical units and to dynamically built
larger (phrase- or sentence-sized) units of analysis.

Section 2 describes machines, a generalization of
finite-state automata (FSA) and finite-state transduc-
ers (FSTs) due to Eilenberg (1974). Section 3 de-
scribes how linguistic and nonlinguistic inputs are pro-
cessed, and how the resulting activation pattern spreads
through the system to produce useful responses. Sec-
tion 4 evaluates the work on the MAV and ATIS cor-
pora. Some conclusions are offered in Section 5.

2 Machines, AVMs, and the lexicon

Machines are composed of an FSA over some alphabet
>, a base set X, and a mapping from ¥ to the set of bi-
nary relations over X . They were introduced by Eilen-
berg (1974) as a means of formalizing the flowcharts
that were commonly used at the time for depicting al-
gorithms. As the FSA consumes a letter from some
string over X, it moves, possibly nondeterministically,
into some other state. The transition will have some
side effect, mapping elements of X, again possibly
nondeterministically (hence the use of relations rather
than functions) onto themselves, depending only on the
letter consumed, not on the state of the FSA before or
after the transition. While the state and arc sets of FSA
are by definition finite, the base set X of a machine
may be infinite.

Attribute-value matrices (AVMs) are standard data
structures that lack the kind of dynamic behavior that
FSA, FST, and machines have. They are stateful only in
the sense of being more or less filled. Both in relation
extraction (database population) and in dialog manage-
ment the overarching goal of the analysis is to find
the relevant values for each attribute. We cannot con-
sider the ticket clerk task completed until we know the
values of the ORIGIN, DESTINATION, TIME_RANGE
and FARE_CLASS attributes, but once these values are
known, the ticket can be issued by a printer plugin that
embodies no natural language understanding whatso-
ever. (Receiving a sufficient amount of money may be
considered a precondition of issuing a ticket, but we
shall ignore details of the debit process here, as it takes



place outside the natural language component.)

Kornai (2010) recognized that machines can be used
to keep track of the partially filled state of the case
frame of a verb, a task standardly performed by a com-
putationally much stronger mechanism, variable bind-
ing. Here we extend the idea to AVMs: simultane-
ous with the FSA consuming a case-marked NP such
as the sublative to God, we should add the NP as a
value to the DESTINATION attribute. The FSA can be
used to exclude this slot from the set of still-unfilled
attributes, and the relational composition mechanism
can do the actual slot-filling. Using the terminology of
Curry (1961), the FSA component of a machine is re-
sponsible for the phenogrammar and the relations over
X coupled to the alphabet express the tectogrammar.

In the early stages, the analysis proceeds in the stan-
dard fashion: words undergo morphological analysis
(Trén et al., 2005; Recski and Varga, 2009) and NPs
are built by a chunker. Machines, being more general
than FSTs, would also be capable of performing two-
level morphological analysis and FST-based chunking,
which means that in principle all stages of linguistic
analysis could be recast in machine terms. In practice,
we didn’t see the need to reimplement everything just
to make this point, and use preexisting morphological
analysis and NP chunking tools. We note that the case
grammatical analysis that we rely on means that En-
glish NPs also get case marked, the only difference is
that we obtain the cases from prepositions and word or-
der (position relative to the verb) rather than from overt
morphological marking.

The lexical entries are highly abstract, and for the
most part, universal. Thus the verb go will have a
source and a goal, and the Hungarian lexicon stores
that the former can be expressed three different kinds
of lative cases (delative rol/rél, elative bol/bél, and
ablative ol/t6l), while the latter can be expressed
by illative ba/be, sublative ra/re, or terminative ig.
The English lexicon stores the information that source
is expressed by the preposition from and destina-
tion by fo. Otherwise the two entries are the same,
before AT SRC, after AT GOAL. Railway-specific en-
tries, such as the names of Intercity trains like Hirds
and Feszty are kept in separate sublexica. Machines are
used to encode both lexical entries and constructions
in the sense of Berkeley Construction Grammar (CxG,
see Goldberg 1995).

The system keeps grammatical and encyclopedic
knowledge strictly separated: standard lexical entries
store only analytic knowledge about words in the
form of dictionary definitions that are written in a
small formal language that gets compiled into ma-
chine structures at build time. The intricacies of
the discount fare structure of the Hungarian Rail-
road Co. are handled through the AVMs that medi-
ate the interaction between the core system (we hes-
itate to call it a parser as no parse is generated)
and the plugins. The sublexica storing the techni-

cal vocabulary are task-specific, but words like ticket
(paper), (card), before[pay/812], FOR right/3122 are
generic. Space doesn’t permit full description of the
formal language here, but the commas signify conjunc-
tions (all terms of the definition are conjunctive), an-
gled brackets signify default status (thus, tickets are
paper by default) and disambiguation is by numerical
indices, so that pay/812 ‘to pay’ is opposed to pay/237
‘salary’.

3 Spreading activation

After morphological and phrase-level preprocessing,
the input is processed by spreading activation from
nodes (machines) that are activated by the input or by
the situation until all required slots of at least one AVM
are satisfied. The ticket counter situation itself acti-
vates the ficket and schedule nodes and the actual lo-
cation of the counter, e.g. Budapest Western railroad
station. Such situational pre-activation is akin to set-
ting defaults (clearly most users will want tickets from
the location of the counter, but they can override this
by requesting some other origin), but there is a funda-
mental difference: there can be no competing defaults,
but plugins fulfilling different types of requests (e.g.
about schedules, fares, discounts, ordinary tickets or
place tickets) are competing with each other.

The architecture itself makes no assumptions about
the order or priority of the plugins. For example, in
ATIS we may route requests to a pricing plugin via a
Fare AVM (which has FLIGHT, CLASS attributes) or to
a booking plugin with the same attributes, yet the two
hardly ever compete, as one will be triggered by the
keywords price and cost, the other by book and reser-
vation. The system has no dedicated message routing
component: wherever the activation is spread is where
the action will be. Similarly, there is no separate archi-
tecture for context awareness: location detection (by
GPS or IP location) may be wrapped into an agent,
and this agent may bind the value of here to this in-
formation. Similar bindings (e.g. setting FARE_CLASS
to 1st or 2nd based on whether the user is expensively
dressed) are quite conceivable. The overall architecture
has the hooks in place for more context-aware exten-
sions, but so far we have not experimented with these.

While the idea of computing the semantics by
spreading activation is far from new (for a summary
of the early work see Findler 1979), the machine-based
system avoids many of the known pitfalls such as the
proliferation of link types. In essence, there is only one
link, with uniform semantics: A is linked to B iff B
appears in the lexical definition of A. When depicting
machines as graphs it is convenient to distinguish ‘1’
links (agent, subject, nominative) from ‘2’ links (pa-
tient, object, accusative), but there are no ‘3’ (indirect
object) or higher links, as ditransitive and higher arity
verbs are built by combining intransitive and transitive
machines (see Kornai 2012).

The activation algorithm has two phases. In the



construction phase we take the morphologically ana-
lyzed and chunked sentence as input and assemble the
machine structures that correspond to its constituents.
This is achieved by creating a machine for each word
and running them on the chunk the word is in. The
type of the machine’s FSA correlates with the lexi-
cal category of the word. The machines of projective
categories attempt to build the corresponding phrase,
e.g. from ‘the next train’ a Noun machine creates
train[next]. All words and phrases, whether in the lex-
icon or the input, are represented by machines. Inter-
action above the chunk level, such as filling the case
frame of verbs, or the slots of CxG constructions, is
done in the next, spreading phase.

To control spreading we maintain two graphs: a
static graph whose nodes are the machines correspond-
ing to words and whose edges are the definitional links,
and an active graph that keeps track of the active ma-
chines pertaining to the currently analyzed sentence.
For every utterance, full or fragmentary alike, the active
graph is initialized from the machine structures created
in the construction phase. In each iteration, the active
graph is extended and transformed in three stages: ex-
pansion, activation, and linking.

Expansion and activation are driven by the lexical
definitions of words. In the expansion step we take
every, as yet unexpanded, active word, and add to the
graph the machine structures compiled from their def-
initions, each structure connected to the word it de-
fines. This is also how AVMs are activated: each
AVM is associated with a word (e.g. TicketAVM with
the word ticket, GroundTransportAVM directly by the
phrase ground transport(ation) or indirectly by limo),
and becomes available only when the corresponding
word is expanded. Activation works in the opposite
direction: words whose definition structure is a sub-
graph of the graph of active machines are also added
to the graph. Lastly, linking is responsible for filling
the empty valency slots of verbs and AVMs. Linking
is driven by a handful of explicitly designated linkers
(Ostler 1979), corresponding roughly to deep cases.

If not guided carefully, the above algorithm could
eventually activate the whole lexicon. To avoid this
problem, we apply a heuristic that, based on the struc-
ture of the static graph, prefers expanding towards
other, already active nodes. The algorithm is run until
one of the stopping conditions is met: either we suc-
ceed in filling all required slots of an AVM, or exceed
a predefined number of iterations; in which case the
system notifies the user that it could not complete the
request.

4 Evaluation

The system was implemented in about 8,000 lines of
python code and publicly demonstrated in Septem-
ber 2012 — response time is in the subsecond range.
Since the MAV corpus was used during development,
it makes little sense to use it for evaluation, but we note

that over 60% of the requests were fragmentary both
in the corpus and in trials. This is in sharp contrast
to ATIS, where most utterances are fully grammatical.
In MAV, only a small fraction (less than 10%) of the
requests were informational (can I pay with a credit
card, can I take a bike on the train, when is the next
train to ...), the rest were ticket, place ticket, and sea-
son ticket requests. For now, the system answers ques-
tions related to the train schedule, but not those related
to MAV rules and regulations.

ATIS provides an excellent dataset to evaluate a sim-
ilar English system, with high quality morphological
analysis and chunking available in the Penn Treebank
(Marcus et al., 1993). After the collection phase, about
30% of the user input was classified by a committee as
‘context-dependent, ambiguous, ill-formed, unanswer-
able, or noncooperative’ (Hemphill et al., 1990). While
we have results similar to those reported in the litera-
ture, 10-15% error on the remaining 70% (Black et al.,
2011), a fair comparison with the more integrated sys-
tems is hard, inasmuch as we don’t have a speech from
end and user queries were typed in manually. That said,
the following two points are worth noting.

First, the variety of questions is far broader: in ATIS
we needed a total of 9 AVMs compared to 3 in MAV.
In principle, people could ask questions concerning the
technical specifications of trains analogous to What is
the wingspan on a 767? but in practice they don’t.
The same point could be made in regards to ground
transportation, facilities at terminals, meals available,
the meaning of abbreviations, etc. Second, in ATIS
long (40 minute) conversations with the system were
encouraged by the data collection protocol, and there
is a definite need for maintaining the results of the in-
quiry phase for reuse in the booking phase, something
that our system currently lacks.

Another, rather disturbing, form of evaluation comes
from the lay public. The system described here works
well enough for people to oppose its deployment as
‘this will only make a few billionaire programmers
richer while taking away the job of Aunt Mary’ (blog
comment on Szedlak:2012).

5 Conclusion

It is hard to deny that the system described here goes
somewhat against the grain of contemporary compu-
tational linguistics. There are hard rules operating
on discrete knowledge states, there is no statistical
component, and most regrettably, there is no mature
technology for the automatic acquisition of the ma-
chines/lexical entries that do the work. Yet at the same
time the system escapes most of the problems that mo-
tivated the shift from discrete symbol manipulation to
continuous optimization.

First, and most important, it has legs: the lexical
entries used for the MAV task are in no way specific
to this domain and have been reused for ATIS with-
out any significant modification. To be sure, there are



many differences between the railroad and the air travel
databases, and many differences between these modes
of travel — there are no ‘open jaw’ railroad trips and
no ‘dining cars’ in the air. But the basic conceptual
structure, as captured by the Ticket AVM, and the ba-
sic syntax of getting from A to B on day C, are shared
across these domains. The system presented here is a
hardline extension of Karttunen’s (1989) Radical Lexi-
calism: the claim is that once you have taken care of the
words, both the syntax and the semantics of a language
are completely determined.

Second, it is not particularly brittle: adding new lex-
ical entries to the network does not have deep rami-
fications for what may be taking place in some other
corner. Changes are reasonably localized and debug-
gable. This is actually an advantage compared to sys-
tems with continuous weights, where bad effects (bugs)
are impossible to attribute to specific causes.

Third, we are in no way restricted to very experi-
enced programmers who take years to learn the ins and
outs of the system. It takes only a few hours of training
to teach the monosemic definitional style to undergrad-
uates, comparing quite favorably to the effort it takes
to explain e.g. the MUC named entity tagging guide-
lines (Chichor and Marsh, 1998). At the same time, the
design avoids the known pitfalls of trying to extract ev-
erything by surface pattern matchers, an approach that
falls apart when faced with the highly fragmentary, free
word order user input seen in the MAV corpus.

This is not to say that we advocate a return to old-
fashioned AI methods. To the contrary, we believe that
the future is automatic acquisition of lexical entries,
and that our current lexicon is but a manually annotated
gold standard that future machine learners one day may
be evaluated on.

Acknowledgments

The first four authors wrote the code. Kornai advised
and wrote the paper. Work supported by OTKA grant
#82333.

References

Douglas E. Appelt, Jerry R. Hobbs, John Bear, David
Israel, and Mabry Tyson. 1993. FASTUS: A finite-
state processor for information extraction from real-
world text. In Proceedings of IJCAI-93.

Alan W Black, Susanne Burger, Alistair Conkie, He-
len Hastie, Simon Keizer, Oliver Lemon, Nicolas
Merigaud, Gabriel Parent, Gabriel Schubiner, Blaise
Thomson, Jason D. Williams, Kai Yu, Steve Young,
and Maxine Eskenazi. 2011. Spoken dialog chal-
lenge 2010: Comparison of live and control test re-
sults. In Proceedings of the SIGDIAL 2011 Confer-
ence, pages 27, Portland, Oregon, June. Associa-
tion for Computational Linguistics.

Nancy Chichor and Elaine Marsh. 1998. MUC-7 in-
formation extraction task definition. In Proc. Sev-

enth Message Understanding Conference (MUC-7),
pages M98-1027. ACL.

Samuel Eilenberg. 1974. Automata, Languages, and
Machines, volume A. Academic Press.

Nicholas V. Findler, editor. 1979. Associative Net-
works: Representation and Use of Knowledge by
Computers. Academic Press.

Adele E. Goldberg. 1995. Constructions: A Con-
struction Grammar Approach to Argument Struc-
ture. University of Chicago Press.

Gregory Grefenstette. 1999. Light parsing as finite
state filtering. In Andras Kornai, editor, Extended
Finite State Models of Language, pages 86-94. Cam-
bridge University Press.

Charles T Hemphill, John J Godfrey, and George R
Doddington. 1990. The ATIS spoken language sys-
tems pilot corpus. In Proceedings of the DARPA
speech and natural language workshop, pages 96—
101.

Lauri Karttunen. 1989. Radical lexicalism. In Mark
Baltin and Anthony Kroch, editors, Alternative Con-
ceptions of Phrase Structure. University of Chicago
Press.

Andrds Kornai. 2010. The algebra of lexical seman-
tics. In Christian Ebert, Gerhard Jdger, and Jens
Michaelis, editors, Proceedings of the 11th Mathe-
matics of Language Workshop, LNAI 6149, pages
174-199. Springer.

Andras Kornai. 2012. Eliminating ditransitives. In
Ph. de Groote and M-J Nederhof, editors, Revised
and Selected Papers from the 15th and 16th For-
mal Grammar Conferences, LNCS 7395, pages 243—
261. Springer.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn treebank. Computa-
tional Linguistics, 19:313-330.

Nicholas Ostler. 1979. Case-Linking: a Theory of
Case and Verb Diathesis Applied to Classical San-
skrit. PhD thesis, MIT.

Gabor Recski and Déniel Varga. 2009. A Hungarian
NP Chunker. The Odd Yearbook.

Addm Szedlak. 2012. Felsogodig kérek egy
ilyen nyugdijas. Origo Techbdzis, pages
http://www.origo.hu/techbazis/20120928—
felsogodig—kerek—egy—ilyen—nyugdijas—robot—
mavpenztarost—epit—a—sztaki.html.

Viktor Trén, Gyorgy Gyepesi, Péter Haldcsy, Andras
Kornai, Laszlo Németh, and Daniel Varga. 2005.
Hunmorph: open source word analysis. In Martin
Jansche, editor, Proc. ACL 2005 Software Workshop,
pages 77-85. ACL, Ann Arbor.



