A Non-deterministic Tokeniser for Finite-State
Parsing

Jean-Pierre Chanod
Rank Xerox Research Centre
Grenoble Laboratory
6 Chemin de Maupertuis
F-38240 Meylan
France
Jean.Pierre.Chanod@xerox.fr

Abstract. This paper describes a non-deterministic tokeniser
implemented and used for the development of a French finite-
state grammar. The tokeniser includes a finite-state automa-
ton for simple tokens and a lexical transducer that encodes a
wide variety of multiword expressions, associated with multi-
ple lexical descriptions when required.

1 Introduction

Usually tokenisation has been seen as an independent process
[5, 9] in natural language processing. In many parsing systems
the tokenisation has had little attention and, especially when
parsing English, tokens are often supposed to be sequences of
letters between two blanks.

In our approach the tokenisation is a firm part of the mor-
phological analysis. Our tokens are defined for the needs of
a syntactic parser (i.e. they are the basic components of the
parsing). This leads us to a large collection of different tokens,

like:

a simple word,
several words forming one token as in a priori,

a same string ambiguously producing one or several tokens

as in de méme,

e a sequence of words that may have significant variation,
like il va y avoir bientét cing ans, and

e a simple word that may become two tokens, e.g. du.

Our system has the following properties. The tokenisation
is able to use lexical information, i.e. it recognises the tokens
that are recognised by the morphological analyser. Also, to-
kens may be ambiguous, i.e. a sequence of characters may
contain ambiguously one or more tokens. And what is impor-
tant because we are using it in a development environment,
the system is reasonably fast to update.

We describe a tokenisation process that uses two distinct
finite-state transducers. Tokenisation is not a totally indepen-
dent process, but closely related to the morphological analy-
sis. The tokens are not described in detail here. What kind of
tokens are needed depends on the finite-state network based
syntactic analyser for French which has been developed during

(© 1996 J.-P. Chanod and P. Tapanainen
Proceedings of the ECAI 96 Workshop
Eztended Finite State Models of Language
Edited by A. Kornai.

Pasi Tapanainen
University of Helsinki

Research Unit For Multilingual Language Technology

Department of General Linguistics
P.O. Box 4
Finland

Pasi.Tapanain@ling.Helsinki.fi

the last few years [3, 4]! For related work, see [1, 8, 10, 12].

2 Non-deterministic tokenisation

As the first step in the analysis, a tokeniser segments the in-
put sentence into tokens. In many applications, it is assumed
that at this level of processing there is no ambiguity. Karttu-
nen [6] describes the compilation of unambiguous tokenisers
from direct replacement expressions. Such tokenisers are now
implemented for various languages. They consist of a single
finite-state network that produces unique output.

While this approach is acceptable for certain applications
such as part of speech disambiguation, it may not be satisfac-
tory for more refined processing, such as syntactic analysis at
a sentence level.

For instance, in French, the string de méme (similarly) can
be treated as a single token (an adverb), or as a sequence
of two independent tokens: the preposition de (of) followed
by the adjective méme (same) as in de méme format (of (the)
same format). If a wrong reading is arbitrarily selected during
the tokenisation, it may lead to inconsistent and incorrect
syntactic analyses.

3 Two networks for tokenisation

In order to produce non-deterministic outputs during the to-
kenisation phase, we propose a novel architecture: it uses two
finite-state networks rather than just one: a simple automa-
ton (the basic tokeniser) and a dedicated lexical transducer
that describes multiword (MW) expressions.

The basic tokeniser identifies general sequences of charac-
ters (combinations of any number of letters, digits and to
some extent punctuation signs), without considering whether
they belong to the language or not. Basically, it recognises
any string that does not have blanks.

The multiword tokeniser is actually a MW lexicon, as op-
posed to the basic tokeniser that is a simple finite state net-
work. The multiword tokeniser recognises the long tokens not
accepted by the basic tokeniser. Such long tokens consists of,

! See: http://www.xerox.fr/grenoble/mltt/reports/home.html.

e.g., a list of known (possibly ambiguous) multiwords and
regular expressions for punctuation and numeric expressions,
such as 284 000, and also for adverbials of time like le Ier
mas. The latter simplifies the syntactic analysis; i.e. we don’t
want to write rules for constructions that we can list.

The tokenising networks are used in the following way:

1. We read characters from the input stream; whenever the
multiword tokeniser accepts a string of characters, we use
this tokeniser. We extract the longest match and obtain the
morphological analysis at the same time.

2. Otherwise, we extract the longest match that the basic to-
keniser accepts and analyse the output with other lexicons
(standard lexicon, guesser, etc.).

3. The found token is removed from the input stream.

3.1 An example

Let us look at an example sentence?extracted from the Le
Monde corpus.

De méme, ”"Port-Mariane sera ce que le marché en fera”,
dit Raymond Dugrand.

The tokenisers divide the sentence into fourteen parts:

De méme, ” / Port-Mariane / sera / ce / que [/ le /
marché / en / fera / ”, / dit / Raymond / Dugrand / .

The MW lexicon recognises the sequences of punctuation (",
above), and it also knows how such sequences should be anal-
ysed. An interesting token is the first one that is also recog-
nised by the MW tokeniser. Besides the word sequence also
the punctuation (and the blank characters) belong to the
recognised sequence.

3.2 Punctuation and multiwords

The punctuation has its own mini-lexicon that is included in
the MW lexicon. Basically, the punctuation lexicon contains
all the punctuation characters repeated any number of times
(and multicharacters like three dots ...) and transformed into
themselves. Besides, blank characters are also included, and
they are transformed into null. Finally, various word bound-
aries are inserted to the output. A simplified regular expres-
sion for this could be:

Coeo 1 ver | % 201+ [0:./ | 0://1]

where .:. denotes that a dot is transformed into itself, % :0
that a blank is removed, and 0:// that an (ambiguous) sen-
tence boundary // is added to the output. This provides
a mechanism for tokenising and producing the same word
boundaries (or token boundaries) for a,b and a, b.

The punctuation itself is mostly just a curiosity but when
we are dealing with the multiword expression, the punctuation
lexicon becomes important. Consider, e.g., the adverbial of
time le Ier mai (the first of May). Let us suppose that we
want to recognise this as one token. Then we cannot just add
it to the MW lexicon. The reason is that the tokeniser uses
the longest match it founds from the MW lexicon and we

2 In English: Similarly, ” Port-Mariane will be what the market will
do out of it”, said Raymond Dugrand.

A Non-deterministic Tokeniser for FS Parsing

could misanalyse a sequence le Ier maire (the first mayor).
There are two ways to fix this: (1) we may add also the le Ier
maire to the MW lexicon, or (2) we simply concatenate the
punctuation lexicon after the multiwords in the lexicon. This
way we obtain the result in the example above. In this case,
the tokenisation is actually resolved after the morphological
analysis.

4 Combining the tokenisers

In theory, the basic tokeniser and the MW lexicon could be
composed into a single transducer. Let T denote the basic to-
keniser, M the multiword lexicon, &4 the morphological analyser
and G a guesser that gives every string an analysis. The tokeni-
sation and the morphological analysis could then be expressed
as one transducer, namelyM U [T° 41 U [T ° [G-A 1]
where ° denotes the composition and G-A the transducer that
does not accept the (input) strings accepted by A.

However, such a compilation easily leads to time and space
problems, while the two independent networks remain rea-
sonable compact even when the number of encoded MW ex-
pressions is high (typically, several thousands, not considering
cyclic expressions such as dates).

5 Ambiguous tokens

For instance, in the case of de méme, one gets the following
two readings at the lexical level:

(1) de Prep ./ méme InvGen SG Adj
(2) de_méme Adv MW

The first reading includes the symbol ./ which represents a
word boundary between the preposition de and the singular
adjective méme, while the second reading is a single token,
marked with a MW tag.

Ambiguous MWs (with respect to tokenisation) cover var-
ious combinations such as preposition + adjective in the de
méme example, or adjective 4+ noun as in bon marché (cheap)
as a MW adverbial, but also good market when analysed as
two independent tokens:

(1) bon Masc SG Adj ./ marché Masc SG Noun
(2) bon_marché InvGen InvPL Adj MW
(3) bon_marché Adv MW

More complex situations may occur when the decomposi-
tion of the MW into more than one token leads to many com-
binations. This is for instance the case with bien que, a MW
connective than means although. When bien gue is split into
two tokens, bzen can be a noun, an adjective or an adverb, and
que a conjunction or an accusative relative pronoun. Besides,
the type of word boundary between bizen and que may vary,
depending on the type of clauses (simple clause, embedded
clause, etc.) to be found between the two tokens. In the end,
one gets about 200 lexical analyses for bien gue, in addition
to the MW connective reading.

6 Components of the MW lexicon

The MW lexicon results from the union of various lexical re-
sources:

J.-P. Chanod and P. Tapanainen

o MWs from the basic lexicon
One component of the MW lexicon results from the ex-
traction of MWs encoded in our basic French morphologi-
cal analyser [7, 2]. This represents about 8000 MWs (6200
nouns, 1000 adverbs, 350 grammar words, 200 adjectives).

e Alternate readings
Another component of the MW lexicon originates from a
transducer that encodes alternate readings for MWs, 1.e. read-
ings where the string is not recognised as a single token, but
rather as a sequence of independent tokens, as mentioned
above for bien que or de méme.
Such alternate readings are described using expressions [11,
13] defined for that purpose. These regular expressions ex-
tract words from the basic morphological analyser, and
combine them as required. The complete lexical reading
results from the concatenation of the contiguous extracted
words, while the relevant word boundaries are inserted in-
between. For instance, one alternative reading of the MW
bien que results from the extraction of the adverb bien and
the connective gue, both being concatenated with any word
boundary in-between (as any clause may start before gue).

e Miscellaneous readings
Another component of the MW lexicon originates from a
lexical transducer which encodes MWs that are not found
in the basic morphological analyser. This covers a wide
range of phenomena, such as misspelt expressions, e.g. a
priort, domain specific terminology, names, idioms, or ex-
pressions that constitute a challenge for the parser by going
against the predictions of the general syntax, e.g. fin mas
(lit. end May), le pourquos et le comment (the why and the
how).

¢ General regular expressions
Another way of adding information to the MW lexicon is to
use general regular expressions that combine specific words,
e.g. nouns appearing in time adverbials, and more generic
words extracted from the lexicon, e.g. prepositions, num-
bers, etc.
This 1s how we encode time MWs like dates, e.g. lund: 21
janvier 1794, or verbal phrases that behave as adverbials,
e.g. il va y avoir bientét cing ans (lit. there will be soon five
years), where some inserted elements belong to predefined
sublexicons (e.g. numerals, adverbials). For example:

i Lvayavoir| yal yaural Adverb Numeral [jours |
mois | années].

7 Conclusion

We described a non-deterministic tokeniser integrated in a
finite-state parser. The tokeniser being non-deterministic means
there is no loss of information when a given string can be seen
either as one token or decomposed into several tokens. The
tokeniser allows us to encode in a compact fashion a wide
range of multiwords, ranging from dates, names, terminolo-
gies, complex adverbials, idioms and more general phrases
that are difficult to parse. This in turn, improves the accu-
racy of parsing.

REFERENCES

[1] Steven P. Abney, ‘Parsing by chunks’, in Principled-Based
Parsing, eds., R. Berwick, S. Abney, and C. Tenny, Kluwer

A Non-deterministic Tokeniser for FS Parsing 12

Academic Publishers, Dordrecht, (1991).

Jean-Pierre Chanod, ‘Finite-state composition of french verb
morphology’, Technical Report MLTT-005, Rank Xerox Re-
search Centre, Grenoble Laboratory, France, (1994).
Jean-Pierre Chanod and Pasi Tapanainen, ‘A lexical interface
for finite-state syntax’, Technical Report MLTT-025, Rank
Xerox Research Centre, Grenoble Laboratory, France, (1996).
Jean-Pierre Chanod and Pasi Tapanainen, ‘Rules and con-
straints in a finite-state grammar’, Technical Report MLTT-
024, Rank Xerox Research Centre, Grenoble Laboratory,
France, (1996).

Gregory Grefenstette and Pasi Tapanainen, ‘What is a word,
what is a sentence? problems of tokenization’, in The §rd In-
ternational Conference on Computational Lezicography, pp-
79-87, Budapest, (1994).

Lauri Karttunen, ‘Directed replacement’, in Proceedings of
the 84th Annual Meeting of the Association for Computa-
tional Linguistics, Santa Cruz, USA, (1996).

Lauri Karttunen, Ron Kaplan, and Annie Zaenen, ‘Two-level
morphology with composition’, In Proceedings of the Four-
teenth International Conference on Computational Linguis-
tics COLING-92, volume I, pp. 141-148, Nantes, France,
(1992).

Kimmo Koskenniemi, Pasi Tapanainen, and Atro Voutilai-
nen, ‘Compiling and using finite-state syntactic rules’, In Pro-
ceedings of the Fourteenth International Conference on Com-
putational Linguistics COLING-92, volume I, pp. 156-162,
Nantes, France, (1992).

David D. Palmer and Marti A. Hearst, ‘Adaptive sentence
boundary disambiguation’, in Proceedings of the 4th Con-
ference on Applied Natural Language Processing, pp. 78-83,
Stuttgart, Germany, (1994).

Emmanuel Roche, Analyse syntazique transformationnelle du
francgais par transducteurs et lezigue-grammaire, Ph.D. dis-
sertation, Université de Paris 7, 1993.

Frédérique Segond and Pasi Tapanainen, ‘Using a finite-state
based formalism to identify and generate multiword expres-
sions’, Technical Report MLTT-019, Rank Xerox Research
Centre, Grenoble Laboratory, France, (1995).

Max Silberztein, Dictionnaires électroniques et analyse au-
tomatigue de textes. Le systéme INTEX, Masson, Paris, 1993.
Pasi Tapanainen, ‘RXRC finite-state compiler’, Technical Re-
port MLTT-020, Rank Xerox Research Centre, Grenoble Lahb-
oratory, France, (1995).

J.-P. Chanod and P. Tapanainen

