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Abstract. The use of Subsequential Transducers (a kind of
Finite-State Models) in Automatic Translation applications is
considered. A methodology that improves the performance of
the learning algorithm by means of an automatic reordering
of the output sentences is presented. This technique yields
a greater degree of synchrony between the input and output
samples. The proposed approach leads to a reduction in the
number of samples necessary to learn the transducer and a
reduction in the size of the model so obtained.

1 Introduction

Recently, the use of Finite-State (F'S) models has been pro-
posed for Language Translation (LT) applications. While this
kind of models is often considered too simplistic to properly
approach such a complex problem, results show that they can
perform surprisingly well in Limited Domain (LD) tasks; that
is, tasks with small or medium sized vocabulary and restricted
semantic scope [7, 9, 12]. One of the reasons for this success
lies on the fact that although natural languages are complex,
the mappings defined by their translations can be compara-
tively much simpler, specially when these languages are close
as 1s the case with many European languages.

Among the many attractive features of FS models for LT,
an important one is the ease with which these models can
be tightly integrated with standard acoustic-phonetic models
of the input language, readily yielding quite effective speech-
wnput LT systems [9]. Thanks to their conceptual and struc-
tural simplicity, these systems are significantly more robust
than others based on the more conventional approach of loosely
coupling an existing LT package to the output of a speech
recognition front-end.

In this paper we focus on Subsequential Transducers (SSTs)
[4]. Output symbols or substrings are generated by a SST only
after having seen enough input symbols to guarantee a correct
output. The amount of symbols to wait for may be variable
and context-dependent and it may also be necessary to pro-
duce output after the whole input has been seen. This allows
for larger “asynchrony” between the input and the output

! Work partially supported by the Spanish CICYT under grant
TIC95-0984-C02-01

2 Supported by a grant of the Spanish Ministerio de Educacién y
Ciencia

(© 1996 J. M. Vilar, E. Vidal and J. C. Amengual
Proceedings of the ECAI 96 Workshop

Eztended Finite State Models of Language

Edited by A. Kornai.

J. C. Amengual
Unidad Predepartamental de Informéatica
Universidad Jaume I,
12071 Castellén, SPAIN.

jcamen@inf.uji.es

sentences than with other simpler FS models such as Sequen-
tial Transducers and Mealy or Moore machines [4]. It should
be noted that many translation tasks that may appear much
more difficult, are inherently of this subsequentialnature. For
instance, we can always translate natural English sentences
into correct Spanish by successively outputting Spanish words
that can be determined from a finite (often short) sequence
of previously seen English words. In other words, we do not
need to wait for a whole discourse to end before starting the
translation.

A distinctive advantage of SST's is that they can be learned
in a completely automatic manner from a sufficiently large
corpus of training data by using a recently proposed algo-
rithm [10, 11]. Using this algorithm, a number of experiments
have been carried out so far with LD LT, including speech-
input applications [7, 9, 12, 14]. These works aimed at solving
different problems arising in this kind of application. In par-
ticular, the need of Input/Output Language Models to cope
with the distortions and noise involved by speech-input op-
eration was first considered in [12] and specific techniques to
keep the required amount of training data at reasonably small
levels were first studied in [14]. In this paper we go deeper into
the latter of the above issues and propose new techniques to
assist the basic SST learning algorithm by reducing the effec-
tive Input/Output asynchrony that has to be modeled by the
learned devices.

2 Subsequential Transducer Learning:
Basic Concepts and Previous Work

A subsequential transducer is a deterministic finite-state net-
work that accepts sentences from a given input language and
produces associated sentences of an output language. Each
edge of the network has associated an input symbol and an
output string. Every time an input symbol is accepted, the
corresponding string is output and a new state is reached.
After the whole input is processed, additional output may be
produced from the last state reached in the analysis of the
input [4].

Given a set of training pairs of sentences from a transla-
tion task, the Onward Subsequential Transducer Inference Al-
gorithm (OSTIA) learns a SST that generalizes the training
set [10, 11]. The algorithm builds a straightforward prefix-



tree representation of all the training pairs and moves the
output strings towards the root of this tree as much as pos-
sible, leading to an “onward” tree representation. Finally a
state merging process is carried out. The algorithm guaran-
tees identification of the target transduction in the limit; that
1s, if the unknown target translation exhibits a subsequential
structure, convergence to it is guaranteed whenever the set of
training samples is representative [10, 11].

Additionally, if models for the input and/or output lan-
guages are available, an extended version of OSTIA can be
used which produces SSTs that only accept input sentences
and only produce output sentences compatible with these
models [9, 12]. This becomes of paramount importance when
noisy and distorted input like speech is expected.

SSTs base their translation ability on “delaying” the pro-
duction of output words until enough of the input sentence
has been seen to guarantee a correct output. This is illustrated
in the following example of Spanish/English translation (from

Feldman’s task [8, 7]):

se aflade un tridngulo grande y claro .
a large light triangle is added .

The input Spanish sentence is translated into English by
following a sequence of states in a SST such that the input
words “se afiade” produce no output (though they change
the state of the SST), the word “un” produces “a” as out-
put, the words “triangulo”, “grande” and “y” do not pro-
duce any output string (though they change the state), the
word “claro” yields “large light triangle” and the end-
of-sentence period produces “is added .”.

Every word sequence whose translation must be delayed is
“stored” by means of the states of the SST. While OSTIA has
proved both theoretically and practically able to learn (possi-
bly large) SST's that can cope with usual Input/Output asyn-
chronies, when the number of (functionally equivalent) words
increases, the required number of states can grow as much as
O(nk), where n 1s the number of words and k the required
delay. Clearly, for realistic tasks, the amount of training data
required to help learning all the possible combinations could
go far beyond practical limits.

In [14] a first approach was proposed to tackle one part of
this problem; namely, the growth with the number of words n.
The basic idea was to rely on word clusters rather than actual
words. With the help of a dictionary, words can be grouped
into “paired clusters” (in both languages) for learning. Also,
in the test phase, the dictionary is used to recover the actual
identity of the words within each output cluster. This pre-
serves the essential F'S nature of the translation model, while
drastically cutting down the size of the learned models and
the corresponding demand of training data. Experiments re-
ported in [14] showed that the vocabulary can be increased
from about 40 words to more than 300 without significant per-
formance degradation or increase in the amount of training
data required.

Nevertheless, the above mentioned exponential growth can
still become prohibitive because of the exponent k; that is,
if the translation of even a small number of words or word
clusters need to be delayed a long extend. In this work we
propose new techniques to tackle this second part of the prob-
lem, while essentially keeping the very convenient finite-state
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Se afiade un triangulo grande y claro

A large light triangle is added

Se afiade un triangulo grande y claro

' W

A added < triangle < large light > is >

Figure 1.
Original pair and a partial alignment (above). Resulting pair after
the reordering (below).

An example of partial alignment and reordering.

nature of the translation model. The aim 1s to reduce the de-
gree of Input/OQutput asynchrony that has to be modeled by
a SST which is learned for a given task.

3 Coping with Input/Output Asynchrony
and Lexicon Size

The techniques introduced here rely on using aligned pairs of
training sentences. Such kind of data can be found in certain
open domain corpora, but for limited domain applications un-
aligned pairs of sentences are often the only data available.
Nonetheless, rough, partial alignments can be easily obtained
by pairing input/output words of each training sentence with
the help of a (probabilistic) dictionary. Techniques to auto-
matically build bilingual dictionaries from training parallel
text have been proposed recently. In this work we use the
so called “IBM Model-1” [6]. This simple stochastic transla-
tion model can be optimally trained from paired sentences
and produces, as a byproduct, a stochastic dictionary. Those
pairs of words having high likelihood of being translation of
each-other are used to obtain the required partial alignments.
This is illustrated in the example of Figure 1 (above).

Since only high probability input/output relations are used,
these partial alignments can be considered robust enough to
be used as “anchor associations” to reorder the words of the
output sentences of the training pairs so that, hopefully, the
most prominent long-term asynchronies are removed. Once a
training set of sentences have been processed in this way, the
OSTI algorithm can be used to learn a SST that accounts for
the mapping from the input language to a “reordered version”
of the output language. This mapping is expected to be much
simpler than the original one in the sense that much less delay
will be required to produce the (reordered) output tokens.
Obviously, the reordering mechanism must provide adequate
means to recover a correct output order for each input (test)
sentence. To this end we use pairs of brackets to adequately
mark the reordered training output sentences, as shown in
Figure 1. From these marks, the original order can be easily
recovered by placing each word preceding a left bracket after
the corresponding (paired) right bracket.

Given a training set S of pairs of input/output sentences
(z,y), the proposed training approach can be summarized as
follows:

1. Train IBM Model-1 on S and obtain a probabilistic dictio-
nary D.

2. Prune from D those pairs of words with probability below
a threshold.
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3. Partially align the pairs of sentences in S using the pruned
D.

4. Reorder and bracket the output sentences of S to produce
S’

5. Using OSTIA, learn a SST T from S’

Now, given a new test input sentence = the system produces
a translation y through the following three simple steps:

1. Obtain the translation y’ of z through T
2. Reorder y' with the help of its embedded brackets.
3. Remove these brackets to obtain y.

4 The Reordering Algorithm

The reordering is done by scanning the output sentence from
left to right and creating a new sentence s along the way. If
the word under consideration is not aligned nor crosses with
any other, it is appended to s. In case there is a crossing, s is
examined right to left, skipping those parts already bracketed,
until a position is found such that it has no crossings. The
word is inserted in that position, together with an opening
bracket and a closing bracket is appended to s.

The process can be seen with the help of the sentence from
the example in Figure 1:

Step | Word | Result (s)
1| A A
2 | large A large
3 | light A large light
4 | triangle | A triangle j large light ;
5 | is A triangle i large light ; is
6 | added A added j triangle j large light ; is ;

No reordering is necessary in the first three steps. A cross-
ing appears when “triangle” is examined, it is then inserted
before “large” to avoid the crossing. The next word is ap-
pended without trouble and finally “added” is placed just
before “triangle”. Note that when searching the placement
of “added” the words “large” and “light” are not examined
since they are already bracketed.

Output Language Modeling: Balancing
the Brackets in the SST Translation of
Test Sentences

One possible problem with this reordering of the output is
that there is no guarantee that the transducers learned by
OSTIA perfectly generalize the bracketing of the training sen-
tences so that brackets will be balanced for all possible test
sentences. This becomes even more problematic when noisy
input is considered, as is the case in speech-input applications.
Given the finite state nature of the SST, keeping the balance
is of course impossible in general, but in practice simple solu-
tions can be used if a maximum depth of the brackets is fixed.
If k is the highest level of bracketing, balance can be achieved
by using a simple output “Language Model” consisting in an
automaton built as follows:

1. Create one state for each of the levels 0...%k. Consider the
state numbered 0 both as the initial and the only final one.
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2. For each symbol different from a bracket create a transition
from each state to itself, labeling the transition with that
symbol.

3. For each level [, connect the state at level ! with that at

level I+ 1 with an arc labeled with an opening bracket and
with that at level [ — 1 with an arc labeled with a closing
bracket.

The result of these steps is an automaton that only accepts
sentences correctly bracketed. By using it as a model of the
output language for OSTIA the desired effect is achieved. In
case a better language model is available, (which in general
may not enforce the bracketing), the standard construction
for the automaton corresponding to the intersection of two
languages can be used.

6 Coping with Noisy Input

In practice, the performance of the SST models tends to de-
grade dramatically when the input sentences do not strictly
comply with the linguistic restrictions imposed by the input
language model. This problem can be solved to some extent
by means of Error-Correcting Parsing [1, 2, 3].

Under this approach, the input sentence, z, is considered
as a corrupted version of some sentence Z € L (L being the
domain of the SST). The corruption process is modelled by
means of an Error Model F, that comprises insertions, sub-
stitutions and deletions. The parsing of an input sentence =
consists then in finding the corresponding string in L which
has a maximum posterior probability; that is,

& = argmax, ¢ Pr(z') Pr(z|z’),

where Pr(z') is the probability of ' with regard to L, given
by the (input part of the) SST, and Pg(z|z’) is the probability
of = being a corrupted version of =’ according to E. Finally,
the translation of £ through the SST, ¥, is the one actually
used in the reordering step for obtaining the final translation.

The above mentioned probabilities can be trained using
a corpus S’ which is a distorted version of S (the training
corpus). An initial model is constructed on the base of the
Levenshtein distance between corrupted and clean sentences.
Similarly, Pr(-) is initialized using a grammar of L with uni-
form distribution of edge probabilities. Then an stochastic
error-correcting parsing of §’ yields new estimates of Pr(-)
and Pg(-|-) and this parsing and estimation process can be
iterated until convergence.

7 Experiments

Spanish-English translation experiments were carried out with
an extension of the so-called Miniature Language Acquisition
Task recently proposed by Feldman et al. [7, 8]. A set of 16000
pairs was used for training, and a separate set of 10000 Span-
ish sentences was used for testing. SST's were learned from the
training set using both the direct approach and the above de-
scribed reordering scheme. In both cases, a 4-Gram language
model for the domain (Spanish), learned from the input sen-
tences of the training pairs, was used for learning the SSTs.
Finally, the probabilities of the resulting SST's were estimated
from the same training data.
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Table 1.

word error rates for distorted input (5% word error rate). In

Experimental results for the Feldman’s Task. Left:

brackets, model sizes (states/edges).

Train. size Direct Reordered
1,000 | 44.0% ( 813 / 2023)| 17.6% (532 / 1338)
2,000 | 37.8% (1406 / 3353)| 6.2% (358 / 979)
4,000 | 25.2% (1686 / 4051)| 2.2% (144 / 440)
8,000 2.7% ( 244/ 719) 1.7% (109 / 344)

16,000 1.7% ( 100/ 363) 1.7% ( 63/ 183)

In order to approach the conditions of speech input opera-
tion the test sentences were distorted through a noisy channel,
C, involving (equally probable) word insertions, deletions and
substitutions. The overall distortion (word error rate) was 5%,
some examples of distorted sentences can be seen in Figure 2
on p. 96. Testing was carried out through stochastic error-
correcting parsing with the corresponding probabilities esti-
mated from a distorted version of the training data [1, 2, 3].
The results, shown in Table 1, confirm that the rate of learning
is significantly higher using the proposed reordering scheme
and the obtained models are smaller.

It should be noted that the sizes of the learned models tend
to decrease with the growth of the amount of training data.
In the limit, as the training set becomes completely repre-
sentative of a source subsequential transduction, the learning
algorithm is guaranteed to yield a canonical (minimum-size)
subsequential transducer [11, 12]. Thus the progress of learn-
ing generally entails a reduction of both the model size and
the error rate.

8 Discussion

A new technique that helps in mitigating one of the difficul-
ties in learning (finite-state) translation models has been pre-
sented. Although it has been tested on a particular algorithm
(OSTIA) its application is general since it only modifies the
presentation of the data. This technique relies on the ability
to find aligments on the training data, although they need
not be complete. A limitation of the technique is that it only
allows the movement of single words, but we are working in a
version that considers the reordering of whole groups of words.
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Original: se elimina el circulo grande y claro que esta muy por encima del triangulo claro y del triangulo mediano y claro
Distorted: se elimina y el circulo grande y claro esta muy por encima triangulo claro y del triangulo mediano un claro
Translation: the large light circle which is far above the light triangle and the medium light triangle is removed

Original: un circulo mediano y claro esta debajo de un cuadrado pequeNo y claro y un triangulo pequeNo y oscuro
Distorted: wun tocan circulo mediano y claro esta de un cuadrado pequeNo claro y un triangulo pequeNo y oscuro
Translation: a medium light circle is below a small light square and a small dark triangle

Figure 2. Some examples of original and 5%-distorted MLA Spanish sentences, together with the corresponding English translations.
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