
Learning Extended Finite State Models forLanguage Translation1J. M. Vilar2, E. Vidal and J. C. AmengualDpto. Sistemas Inform�aticos y Computaci�on Unidad Predepartamental de Inform�aticaUniversidad Polit�ecnica de Valencia, Universidad Jaume I,46020 Valencia, SPAIN. 12071 Castell�on, SPAIN.fjvilar,evidalg@iti.upv.es jcamen@inf.uji.esAbstract. The use of Subsequential Transducers (a kind ofFinite-State Models) in Automatic Translation applications isconsidered. A methodology that improves the performance ofthe learning algorithm by means of an automatic reorderingof the output sentences is presented. This technique yieldsa greater degree of synchrony between the input and outputsamples. The proposed approach leads to a reduction in thenumber of samples necessary to learn the transducer and areduction in the size of the model so obtained.1 IntroductionRecently, the use of Finite-State (FS) models has been pro-posed for Language Translation (LT) applications. While thiskind of models is often considered too simplistic to properlyapproach such a complex problem, results show that they canperform surprisingly well in Limited Domain (LD) tasks; thatis, tasks with small or medium sized vocabulary and restrictedsemantic scope [7, 9, 12]. One of the reasons for this successlies on the fact that although natural languages are complex,the mappings de�ned by their translations can be compara-tively much simpler, specially when these languages are closeas is the case with many European languages.Among the many attractive features of FS models for LT,an important one is the ease with which these models canbe tightly integrated with standard acoustic-phonetic modelsof the input language, readily yielding quite e�ective speech-input LT systems [9]. Thanks to their conceptual and struc-tural simplicity, these systems are signi�cantly more robustthan others based on the more conventional approach of looselycoupling an existing LT package to the output of a speechrecognition front-end.In this paper we focus on Subsequential Transducers (SSTs)[4]. Output symbols or substrings are generated by a SST onlyafter having seen enough input symbols to guarantee a correctoutput. The amount of symbols to wait for may be variableand context-dependent and it may also be necessary to pro-duce output after the whole input has been seen. This allowsfor larger \asynchrony" between the input and the output1 Work partially supported by the Spanish CICYT under grantTIC95{0984{C02{012 Supported by a grant of the Spanish Ministerio de Educaci�on yCiencia

sentences than with other simpler FS models such as Sequen-tial Transducers and Mealy or Moore machines [4]. It shouldbe noted that many translation tasks that may appear muchmore di�cult, are inherently of this subsequential nature. Forinstance, we can always translate natural English sentencesinto correct Spanish by successively outputting Spanish wordsthat can be determined from a �nite (often short) sequenceof previously seen English words. In other words, we do notneed to wait for a whole discourse to end before starting thetranslation.A distinctive advantage of SSTs is that they can be learnedin a completely automatic manner from a su�ciently largecorpus of training data by using a recently proposed algo-rithm [10, 11]. Using this algorithm, a number of experimentshave been carried out so far with LD LT, including speech-input applications [7, 9, 12, 14]. These works aimed at solvingdi�erent problems arising in this kind of application. In par-ticular, the need of Input/Output Language Models to copewith the distortions and noise involved by speech-input op-eration was �rst considered in [12] and speci�c techniques tokeep the required amount of training data at reasonably smalllevels were �rst studied in [14]. In this paper we go deeper intothe latter of the above issues and propose new techniques toassist the basic SST learning algorithm by reducing the e�ec-tive Input/Output asynchrony that has to be modeled by thelearned devices.2 Subsequential Transducer Learning:Basic Concepts and Previous WorkA subsequential transducer is a deterministic �nite-state net-work that accepts sentences from a given input language andproduces associated sentences of an output language. Eachedge of the network has associated an input symbol and anoutput string. Every time an input symbol is accepted, thecorresponding string is output and a new state is reached.After the whole input is processed, additional output may beproduced from the last state reached in the analysis of theinput [4].Given a set of training pairs of sentences from a transla-tion task, the Onward Subsequential Transducer Inference Al-gorithm (OSTIA) learns a SST that generalizes the trainingset [10, 11]. The algorithm builds a straightforward pre�x-c
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tree representation of all the training pairs and moves theoutput strings towards the root of this tree as much as pos-sible, leading to an \onward" tree representation. Finally astate merging process is carried out. The algorithm guaran-tees identi�cation of the target transduction in the limit; thatis, if the unknown target translation exhibits a subsequentialstructure, convergence to it is guaranteed whenever the set oftraining samples is representative [10, 11].Additionally, if models for the input and/or output lan-guages are available, an extended version of OSTIA can beused which produces SSTs that only accept input sentencesand only produce output sentences compatible with thesemodels [9, 12]. This becomes of paramount importance whennoisy and distorted input like speech is expected.SSTs base their translation ability on \delaying" the pro-duction of output words until enough of the input sentencehas been seen to guarantee a correct output. This is illustratedin the following example of Spanish/English translation (fromFeldman's task [8, 7]):se a~nade un tri�angulo grande y claro .a large light triangle is added .The input Spanish sentence is translated into English byfollowing a sequence of states in a SST such that the inputwords \se a~nade" produce no output (though they changethe state of the SST), the word \un" produces \a" as out-put, the words \tri�angulo", \grande" and \y" do not pro-duce any output string (though they change the state), theword \claro" yields \large light triangle" and the end-of-sentence period produces \is added .".Every word sequence whose translation must be delayed is\stored" by means of the states of the SST. While OSTIA hasproved both theoretically and practically able to learn (possi-bly large) SSTs that can cope with usual Input/Output asyn-chronies, when the number of (functionally equivalent) wordsincreases, the required number of states can grow as much asO(nk), where n is the number of words and k the requireddelay. Clearly, for realistic tasks, the amount of training datarequired to help learning all the possible combinations couldgo far beyond practical limits.In [14] a �rst approach was proposed to tackle one part ofthis problem; namely, the growth with the number of words n.The basic idea was to rely on word clusters rather than actualwords. With the help of a dictionary, words can be groupedinto \paired clusters" (in both languages) for learning. Also,in the test phase, the dictionary is used to recover the actualidentity of the words within each output cluster. This pre-serves the essential FS nature of the translation model, whiledrastically cutting down the size of the learned models andthe corresponding demand of training data. Experiments re-ported in [14] showed that the vocabulary can be increasedfrom about 40 words to more than 300 without signi�cant per-formance degradation or increase in the amount of trainingdata required.Nevertheless, the above mentioned exponential growth canstill become prohibitive because of the exponent k; that is,if the translation of even a small number of words or wordclusters need to be delayed a long extend. In this work wepropose new techniques to tackle this second part of the prob-lem, while essentially keeping the very convenient �nite-state

Se a~nade un tri�angulo grande y claroA large light triangle is addedSe a~nade un tri�angulo grande y claroA added < triangle < large light > is >Figure 1. An example of partial alignment and reordering.Original pair and a partial alignment (above). Resulting pair afterthe reordering (below).nature of the translation model. The aim is to reduce the de-gree of Input/Output asynchrony that has to be modeled bya SST which is learned for a given task.3 Coping with Input/Output Asynchronyand Lexicon SizeThe techniques introduced here rely on using aligned pairs oftraining sentences. Such kind of data can be found in certainopen domain corpora, but for limited domain applications un-aligned pairs of sentences are often the only data available.Nonetheless, rough, partial alignments can be easily obtainedby pairing input/output words of each training sentence withthe help of a (probabilistic) dictionary. Techniques to auto-matically build bilingual dictionaries from training paralleltext have been proposed recently. In this work we use theso called \IBM Model-1" [6]. This simple stochastic transla-tion model can be optimally trained from paired sentencesand produces, as a byproduct, a stochastic dictionary. Thosepairs of words having high likelihood of being translation ofeach-other are used to obtain the required partial alignments.This is illustrated in the example of Figure 1 (above).Since only high probability input/output relations are used,these partial alignments can be considered robust enough tobe used as \anchor associations" to reorder the words of theoutput sentences of the training pairs so that, hopefully, themost prominent long-term asynchronies are removed. Once atraining set of sentences have been processed in this way, theOSTI algorithm can be used to learn a SST that accounts forthe mapping from the input language to a \reordered version"of the output language. This mapping is expected to be muchsimpler than the original one in the sense that much less delaywill be required to produce the (reordered) output tokens.Obviously, the reordering mechanism must provide adequatemeans to recover a correct output order for each input (test)sentence. To this end we use pairs of brackets to adequatelymark the reordered training output sentences, as shown inFigure 1. From these marks, the original order can be easilyrecovered by placing each word preceding a left bracket afterthe corresponding (paired) right bracket.Given a training set S of pairs of input/output sentences(x; y), the proposed training approach can be summarized asfollows:1. Train IBM Model-1 on S and obtain a probabilistic dictio-nary D.2. Prune from D those pairs of words with probability belowa threshold.Learning Extended FS Models 93 J. M. Vilar, E. Vidal and J. C. Amengual



3. Partially align the pairs of sentences in S using the prunedD.4. Reorder and bracket the output sentences of S to produceS0.5. Using OSTIA, learn a SST T from S0.Now, given a new test input sentence x the system producesa translation y through the following three simple steps:1. Obtain the translation y0 of x through T2. Reorder y0 with the help of its embedded brackets.3. Remove these brackets to obtain y.4 The Reordering AlgorithmThe reordering is done by scanning the output sentence fromleft to right and creating a new sentence s along the way. Ifthe word under consideration is not aligned nor crosses withany other, it is appended to s. In case there is a crossing, s isexamined right to left, skipping those parts already bracketed,until a position is found such that it has no crossings. Theword is inserted in that position, together with an openingbracket and a closing bracket is appended to s.The process can be seen with the help of the sentence fromthe example in Figure 1:Step Word Result (s)1 A A2 large A large3 light A large light4 triangle A triangle < large light >5 is A triangle < large light > is6 added A added < triangle < large light > is >No reordering is necessary in the �rst three steps. A cross-ing appears when \triangle" is examined, it is then insertedbefore \large" to avoid the crossing. The next word is ap-pended without trouble and �nally \added" is placed justbefore \triangle". Note that when searching the placementof \added" the words \large" and \light" are not examinedsince they are already bracketed.5 Output Language Modeling: Balancingthe Brackets in the SST Translation ofTest SentencesOne possible problem with this reordering of the output isthat there is no guarantee that the transducers learned byOSTIA perfectly generalize the bracketing of the training sen-tences so that brackets will be balanced for all possible testsentences. This becomes even more problematic when noisyinput is considered, as is the case in speech-input applications.Given the �nite state nature of the SST, keeping the balanceis of course impossible in general, but in practice simple solu-tions can be used if a maximum depth of the brackets is �xed.If k is the highest level of bracketing, balance can be achievedby using a simple output \Language Model" consisting in anautomaton built as follows:1. Create one state for each of the levels 0 : : : k. Consider thestate numbered 0 both as the initial and the only �nal one.

2. For each symbol di�erent from a bracket create a transitionfrom each state to itself, labeling the transition with thatsymbol.3. For each level l, connect the state at level l with that atlevel l+1 with an arc labeled with an opening bracket andwith that at level l � 1 with an arc labeled with a closingbracket.The result of these steps is an automaton that only acceptssentences correctly bracketed. By using it as a model of theoutput language for OSTIA the desired e�ect is achieved. Incase a better language model is available, (which in generalmay not enforce the bracketing), the standard constructionfor the automaton corresponding to the intersection of twolanguages can be used.6 Coping with Noisy InputIn practice, the performance of the SST models tends to de-grade dramatically when the input sentences do not strictlycomply with the linguistic restrictions imposed by the inputlanguage model. This problem can be solved to some extentby means of Error-Correcting Parsing [1, 2, 3].Under this approach, the input sentence, x, is consideredas a corrupted version of some sentence x̂ 2 L (L being thedomain of the SST). The corruption process is modelled bymeans of an Error Model E, that comprises insertions, sub-stitutions and deletions. The parsing of an input sentence xconsists then in �nding the corresponding string in L whichhas a maximum posterior probability; that is,x̂ = argmaxx02LPL(x0)PE(xjx0);where PL(x0) is the probability of x0 with regard to L, givenby the (input part of the) SST, and PE(xjx0) is the probabilityof x being a corrupted version of x0 according to E. Finally,the translation of x̂ through the SST, y0, is the one actuallyused in the reordering step for obtaining the �nal translation.The above mentioned probabilities can be trained usinga corpus S0 which is a distorted version of S (the trainingcorpus). An initial model is constructed on the base of theLevenshtein distance between corrupted and clean sentences.Similarly, PL(�) is initialized using a grammar of L with uni-form distribution of edge probabilities. Then an stochasticerror-correcting parsing of S0 yields new estimates of PL(�)and PE(�j�) and this parsing and estimation process can beiterated until convergence.7 ExperimentsSpanish-English translation experiments were carried out withan extension of the so-called Miniature Language AcquisitionTask recently proposed by Feldman et al. [7, 8]. A set of 16000pairs was used for training, and a separate set of 10000 Span-ish sentences was used for testing. SSTs were learned from thetraining set using both the direct approach and the above de-scribed reordering scheme. In both cases, a 4-Gram languagemodel for the domain (Spanish), learned from the input sen-tences of the training pairs, was used for learning the SSTs.Finally, the probabilities of the resulting SSTs were estimatedfrom the same training data.Learning Extended FS Models 94 J. M. Vilar, E. Vidal and J. C. Amengual



Table 1. Experimental results for the Feldman's Task. Left:word error rates for distorted input (5% word error rate). Inbrackets, model sizes (states/edges).Train. size Direct Reordered1,000 44.0% ( 813 / 2023) 17.6% (532 / 1338)2,000 37.8% (1406 / 3353) 6.2% (358 / 979)4,000 25.2% (1686 / 4051) 2.2% (144 / 440)8,000 2.7% ( 244 / 719) 1.7% (109 / 344)16,000 1.7% ( 100 / 363) 1.7% ( 63 / 183)In order to approach the conditions of speech input opera-tion the test sentences were distorted through a noisy channel,C, involving (equally probable) word insertions, deletions andsubstitutions. The overall distortion (word error rate) was 5%,some examples of distorted sentences can be seen in Figure 2on p. 96. Testing was carried out through stochastic error-correcting parsing with the corresponding probabilities esti-mated from a distorted version of the training data [1, 2, 3].The results, shown in Table 1, con�rm that the rate of learningis signi�cantly higher using the proposed reordering schemeand the obtained models are smaller.It should be noted that the sizes of the learned models tendto decrease with the growth of the amount of training data.In the limit, as the training set becomes completely repre-sentative of a source subsequential transduction, the learningalgorithm is guaranteed to yield a canonical (minimum-size)subsequential transducer [11, 12]. Thus the progress of learn-ing generally entails a reduction of both the model size andthe error rate.8 DiscussionA new technique that helps in mitigating one of the di�cul-ties in learning (�nite-state) translation models has been pre-sented. Although it has been tested on a particular algorithm(OSTIA) its application is general since it only modi�es thepresentation of the data. This technique relies on the abilityto �nd aligments on the training data, although they neednot be complete. A limitation of the technique is that it onlyallows the movement of single words, but we are working in aversion that considers the reordering of whole groups of words.REFERENCES[1] J.C. Amengual, E. Vidal. \Canonizaci�on del Lenguaje me-diante T�ecnicas de Correcci�on de Errores" (in Spanish).Technical Report, DSIC-II/17/95. Depto. de Sistemas In-form�aticos y Computaci�on. Universidad Polit�ecnica de Va-lencia. Spain. September, 1995.[2] J.C. Amengual, E. Vidal and J.M. Bened��. \SimplifyingLanguage through Error-Correcting Decoding". Proceedingsof the ICSLP96. To be published. 1996.[3] L. Baahl and F. Jelinek. \Decoding for Channels with In-sertions, Deletions and Substitutions with Applications toSpeech Recognition". IEEE Transactions on InformationTheory. Vol.IT-21, No.4, pp.404-411. July, 1975.[4] J. Berstel. Transductions and Context-Free Languages.Teubner, Stuttgart. 1979.[5] P.F. Brown et al.. \A Statistical Approach to Ma-chine Translation".Computational Linguistics, Vol. 16, No.2,pp.79-85, 1990.[6] P.F. Brown, S.A. Della Pietra, V.J. Della Pietra,R.L.Mercer. \The Mathematics of Statistical Machine

Translation: Parameter Estimation".Computational Linguis-tics, Vol.19, No.2, pp.263-311, 1993.[7] A. Castellanos, E. Vidal, I. Galiano. \Application of OS-TIA To Machine Translation Tasks". 2nd International Col-loquium on Grammatical Inference, proc., Alicante, Spain,Sept., 1994.[8] J.A. Feldman, G. Lakoff, A. Stolcke, S.H. Weber.\Miniature Language Acquisition: A touchstone for cognitivescience". Technical Report, TR-90-009. ICSI, Berkeley, Cali-fornia. April, 1990.[9] V.M. Jim�enez, A. Castellanos, E. Vidal, J. Oncina \SomeResults with a Trainable Speech Translation and Understand-ing System". Proc. of ICASSP95, pp. 113-116. 1995.[10] J. Oncina. \Aprendizajede LenguagesRegulares y FuncionesSubsecuenciales". Ph.D. diss., Universidad Polit�ecnica de Va-lencia, 1991.[11] J. Oncina, P. Garc�ia, E. Vidal. \Learning SubsequentialTransducers for Pattern Recognition Interpretation Tasks".IEEE Transactions on Pattern Analysis and Machine Intel-ligence, Vol.15, No.5, pp.448-458. May, 1993.[12] J. Oncina, A. Castellanos, E. Vidal, V. Jim�enez.\Corpus-Based Machine Translation through SubsequentialTransducers". Third Int. Conf. on the Cognitive Science ofNatural Language Processing, proc., Dublin, 1994[13] E. Vidal, F. Casacuberta, P. Garc�ia. \Grammatical Infer-ence and Automatic Speech Recognition". In Speech Recog-nition and Coding. New Advances and Trends, J. Rubio andJ.M. L�opez, Eds. Springer Verlag, 1994.[14] J.M. Vilar, A. Marzal, E. Vidal. \Learning LanguageTranslation in Limited Domains using Finite-State Mod-els: some Extensionsand Improvements".EUROSPEECH-95,Proc. Madrid, 1995.
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Original: se elimina el circulo grande y claro que esta muy por encima del triangulo claro y del triangulo mediano y claroDistorted: se elimina y el circulo grande y claro esta muy por encima triangulo claro y del triangulo mediano un claroTranslation: the large light circle which is far above the light triangle and the medium light triangle is removedOriginal: un circulo mediano y claro esta debajo de un cuadrado pequeNo y claro y un triangulo pequeNo y oscuroDistorted: un tocan circulo mediano y claro esta de un cuadrado pequeNo claro y un triangulo pequeNo y oscuroTranslation: a medium light circle is below a small light square and a small dark triangleFigure 2. Some examples of original and 5%-distorted MLA Spanish sentences, together with the corresponding English translations.
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