
Comments on Csuhaj-Varj�u

Mark-Jan Nederhof
University of Groningen

The Netherlands

markjan@let.rug.nl

Abstract. We investigate some of the de�nitions in the pa-
per commented upon, and we propose some extensions.

1 Colonies versus context-free grammars

Here we investigate De�nition 3.1, which introduces colonies.
A colony is a system of regular grammars generating �nite
languages; each such regular grammar is called a component

of the colony. Because a terminal symbol of one colony may
also be the start symbol of another, the components may be
activated to derive a string in cooperation.

There are two ways of having the components cooperate.
The �rst is called b-mode, which means that one component
after the other is used to rewrite one particular symbol of
the sentential form. The second is called t-mode, which dif-
fers from the b-mode in that in each iteration a particular
component is to rewrite all occurrences of the corresponding
start symbol.

The rewriting process starts with one particular start sym-
bol S, and may be �nished when the sentential form consists
only of symbols in a certain set of terminals T .

We will present colonies in a slightly di�erent form, in order
to allow comparison with context-free grammars. First we will
consider only the b-mode, and in Section 2 we will show that
the t-mode increases the generative capacity.

Looking at the de�nition in the paper, we see that the
regular grammars, i.e. the components, are to generate �nite
languages.1This means that we can enumerate all ways that
the start symbol can be rewritten to a string. For example,
we may have

Si ! �1

Si ! �2

...

Si ! �p

where Si is the start symbol of the i-th component, and �1,
: : : , �p are the strings that Si can be rewritten to. The enu-
meration of the p ways to rewrite Si can be given as p context-
free rules, as we have done above. The purpose of this nota-
tion is to make clear that colonies can be seen as context-free

1 Actually, nowhere is any use made of the assumption that the
components are regular grammars.Only the �niteness of the gen-
erated languages is relevant to the discussion. In Section 3 we
will investigate what happens when the constraint on �niteness
is dropped.

grammars: If we collect all such context-free rules from all
components, then a context-free grammar results.

A few small details need to be settled. First, the start sym-
bol of the context-free grammar naturally is S.

Second, we need to distinguish between terminals and non-
terminals. Some symbol may be treated di�erently by di�er-
ent components: a terminal symbol of one may be the start
symbol of another. The solution is to treat all symbols in
the components as nonterminals in the context-free grammar.
This means that for the rules Si ! �j that we derive from
each component, all symbols in �j will be considered to be
nonterminals. The terminals will now be chosen to be fresh
symbols, one for each symbol in T .

More precisely, if the symbols in T are A1; : : : ;Am, then
we introduce fresh terminal symbols a1; : : : ; am. We then add
the rules

A1 ! a1

A2 ! a2

...

Am ! am

Now we have a full context-free grammar that generates the
same language as the colony it was derived from, provided this
colony is interpreted in b-mode. (For the purpose of compar-
ing the two languages, we need to identify the fresh terminals
ai with the corresponding symbols Ai.)

The opposite construction is also interesting: Can we �nd a
colony for each context-free grammar? The answer is yes for
the acceptance styles (i), (ii) and (iv), as Theorem 3.1 already
suggests.

The construction is as follows. Consider a context-free gram-
mar.

We construct the colony by taking each context-free rule
separately as a component. That is, for each rule A ! �

we construct a component, as a regular grammar with start
symbol A generating � as only string.

The start symbol of the colony is the start symbol of the
context-free grammar, and the set T is the set of all terminals
in the context-free grammar. With regard to the acceptance
styles (De�nition 3.3), the terminal symbols of the compo-
nents need to be chosen with some care. In the case of style
(i), \arb", and style (iv), \all", we can take the set of termi-
nals for each component to be the set of all grammar symbols,

c
 1996 M.J. Nederhof
Proceedings of the ECAI 96 Workshop
Extended Finite State Models of Language
Edited by A. Kornai.

in which case T � [ni=1Ti and T � \ni=1Ti obviously hold.2

In the case of style (ii), \one", the problem is solved by
furthermore introducing one dummy component, with a fresh
symbol as start symbol, generating the empty language, and
having T as terminal set. Then obviously T = Ti, for some i,
viz. for the i corresponding to that dummy component.

We cannot make the construction in the case of style (iii),
\ex", since in general, the set of terminals for each component
should contain at least the symbols in the right-hand side of
the context-free rules from which it is derived, which generally
contains more than the terminals of the grammar.

It seems that the class of languages L(Col ; b; ex) corre-
sponds to those languages that can be described by context-
free grammars in which the terminal symbols occur only in a
subset of the rules of the form:

A1 ! a1

A2 ! a2

...

Am ! am

where A1; : : : ;Am is a list of all nonterminals in the grammar
without duplicates, and a1; : : : ; am is a list of all terminals in
the grammar without duplicates. In other words, there is a
one-to-one mapping between nonterminals and terminals.

My conjecture is that for any context-free language L, there
is a grammar with the above constraint on the occurrences of
the terminal symbols, such that the intersection of the gen-
erated language and the language ��, some alphabet �, is L.
In other words, by taking a language from L(Col ; b; ex), and
eliminating those strings containing unwanted terminals, we
may obtain any context-free language.

2 Colonies in t-mode

If we want to see colonies as context-free grammars then we
need an additional concept in order to allow modeling of t-
mode derivations.

Consider for example the following context-free grammar.

S ! ABABA (1)

A ! CA (2)

A ! C (3)

B ! b (4)

C ! c (5)

This may have been derived from a colony by the process
described above. The rules (1), (2) and (3) may have come
from 3 distinct components, and rules (4) and (5) may have
been introduced because B and C were terminals in T .

The colony in t-mode would generate the language fckbckbck

j k 2 f1; 2; : : :gg. Modeling this in the context-free grammar
above requires that at each derivation step, all occurrences of
a certain nonterminal need to be rewritten using context-free
rules originating from the same component of the colony. In
the running example, this means that either all occurrences
of A need to be rewritten by means of rule (2) or all by means

2 There is no reason why the set of terminals of a grammar may
not contain some that do not occur in any terminal string.

of rule (3), but rules (2) and (3) should not be applied simul-
taneously.

In the general case, for each nonterminal A we need to
partition the grammar rules de�ning A into a number of sets,
each of which corresponds to one particular component of the
colony.

3 A generalization of colonies

It is well-known that the generative capacity of context-free
grammars is not increased when right-hand sides of rules are
generalized to be regular expressions instead of linear strings
over grammar symbols. Such grammars are known under the
name \extended context-free grammars". (See for example
Purdom&Brown, 1981.)

For example, consider a rule A! (b[c)�. This rule can be
rewritten to a number of traditional context-free rules which
together have the same meaning:

A ! �

A ! bA

A ! cA

The general case can be handled by considering that regular
expressions can be transformed into �nite automata, and from
the transitions of these �nite automata, the linear context-free
rules can be easily derived. (Note that the resulting grammar
is regular, apart from epsilon rules.)

In light of this fact, one may wonder if the same gener-
alization can be applied to colonies. By De�nition 3.1, the
languages generated by components of colonies are not only
restricted to be regular, they are even constrained to be �-
nite, and dropping this restriction on �niteness is what we
are interested in here.

Suppose therefore that the languages of the components
can be described by means of regular expressions. By gen-
eralizing the transformation from Section 1 from colonies to
context-free grammars we obtain an easy proof that preserva-
tion of the generative capacity of context-free grammars under
extension with regular expressions carries over to colonies in
b-mode: Colonies in which the components generate arbitrary
regular languages, as opposed to �nite languages, can describe
the same class of languages, provided the b-mode is applied.

The remaining question is whether the situation is di�erent
for t-mode. My conjecture is that the generative capacity does
indeed increase. Consider for example

S ! ABABA

A ! C
�

B ! b

C ! c

At the three occurrences of A in the sentential form ABABA

where rewriting to a number of C's takes place, there is no
\internal synchronization" between the three rewriting pro-
cesses, so that a distinct number of C's can be produced for
each occurrence of A. Although in this case the same language
could be described by a traditional kind of grammar derived
from a colony, viz.

S ! A1BA2BA3

Comments on E. Csuhaj-Varj�u 33 M.J. Nederhof

A1 ! CA1

A1 ! �

A2 ! CA2

A2 ! �

A3 ! CA3

A3 ! �

B ! b

C ! c

my hunch is that it may not be possible in all cases.
In this limited commentary, we will not take into considera-

tion the more advanced concepts presented in the paper, such
as extended colonies and structured colonies. Possibly, gener-
alizations similar to those presented above can be applied to
these concepts as well.

REFERENCES

[1] P.W. Purdom, Jr. and C.A. Brown, `Parsing extended LR(k)
grammars', Acta Informatica, 15, 115{127, (1981).

Comments on E. Csuhaj-Varj�u 34 M.J. Nederhof

