
A Parser from Antiquity:
An Early Application of Finite State

Transducers to Natural Language Parsing

Aravind K. Joshi

Department of Computer and Information Science

Room 555 Moore School

University of Pennsylvania

Philadelphia, Pa 19104 USA

joshi@linc.cis.upenn.edu

A parsing program was designed and implemented at the
University of Pennsylvania during the period June, 1958 to
July 1959. This program was part of the Transformations
and Discourse Analysis Project (TDAP) directed by Zellig
S. Harris. The techniques used in this program, besides be-
ing inuenced by the particular linguistic theory arose out of
the need to deal with the extremely limited computational
resources available at that time. The program was essentially
a cascade of �nite state transducers (fst). To the best of our
knowledge, this is the �rst application of fst's to parsing. The
program consisted of the following phases.

1. Dictionary look-up.
2. Replacement of some `grammatical idioms' by a single part-

of-speech.
3. Rule based parts- of-speech disambiguation.
4. A right-to-left fst composed with a left-to-right fst for com-

puting `simple noun phrases'.
5. A left-to-right fst for computing `simple adjuncts' such as

prepositional phrases and adverbial phrases.
6. A left-to-right fst for computing simple verb clusters.
7. A left-to-right `fst' for computing clauses.

In Phase 1, each word is assigned one or more parts-of-
speech (POS). If a word is assigned more than one POS, then
sometimes they are ranked, the less frequent POS �rst and
then the next. Thus for example, for `show' N is ranked before
V and for `book' V is ranked before N. There were about
14 verb subcategorizations for verbs. Since the Prepositional
Phrases (PPs) were marked with the speci�c prepositions,
there were e�ectively over 50 subcategorizations. The parser
did not handle unknown words.
In Phase 2, A `grammatical idioms' such as `of course' is

replaced by a single POS for adverb, `per cent' by POS for
noun etc. For each `grammatical idiom' one word is marked as
an index in the dictionary together with the local environment
(words to the left and to the right of the index word), also
speci�ed in the dictionary. Phase 2 is a simple case of �nite
transduction.
In Phase 3, rule based disambiguation techniques are used

for POS disambiguation. There were about 14 tests, N-elimi-

nating tests, V-eliminating tests, etc. If the POS for a word
are ordered, for example, for `show' N before V, then the
N-eliminating tests are applied �rst. If they fail then the V-
eliminating tests area applied. If these fail also then the ambi-
guity remains. Most tests look for bounded contexts to the left
and to the right; thus these are �nite transductions. However
some tests use contexts speci�able by simple regular expres-
sions and thus they are �nite state transductions. The ordered
set of tests are cycled until no further disambiguations can be
made.
The strings (phrases) computed in Phases 4, 5, and 6 above

are called �rst-order strings as they do not involve proper
nesting. The strings (clauses) computed in Phase 7 are called
second order strings as they may involve proper nestings. The
computation in Phase 7 is strictly speaking not a �nite state
computation.
The fst's were made 'e�ectively' deterministic by (1) choos-

ing the direction of the scan (left-to-right or right-to-left) and
adopting the longest path strategy, (2) cascading right-to-left
and left-to-right transductions, and (3) using the delimiting
characters to allow for some minimal nondeterminism. These
aspects of the program have a close relationship to some of
the recent work on fst's such as subsequential machines [7,9],
decomposition of an fst into a two sequential fst's [5,8] and
the work on `directed replacement' [6]. The parsing style itself
has resemblance to Abney's chunking parser [4].
The overall objective of the program was to prepare the

text for tasks such as abstracting. However, the 1958-59 pro-
gram only did the parsing. Besides parsing a large number of
test sentences, the program processed about 25 sentences from
a journal paper in biochemistry. Although the fst's compute
more structure, the �nal output shows relatively at struc-
tures. Adjuncts are never explicitly attached. Here is an ex-
ample:

(1) We have found that subsequent addition of the second
inducer of either system after allowing single induction to pro-
ceed for 15 minutes also results in increased reproduction of
both enzymes

There are no grammatical idioms in this example. In Phase

c 1996 Aravind K. Joshi
Proceedings of the ECAI 96 Workshop
Extended Finite State Models of Language
Edited by A. Kornai.

3, `results' (N/V) is resolved to V. After the �rst three phases,
the �rst right-to-left fst identi�es the following simple NPs in
this example, enclosed in [...].

(2) [We] have found that [subsequent addition] of [the sec-
ond inducer] of [either system] after allowing [single induction]
to proceed for [15 minutes] also results in [increased reproduc-
tion] of [both enzymes]

The next left-to-right fst does not identify any new simple
NPs in this example. It would have found NPs such as [the
rich], which are identi�ed in the left-to-right scan.
The next left-to-right fst identi�es the following simple ad-

juncts in this example, enclosed in (...).

(3) [We] have found that [subsequent addition](of [the sec-
ond inducer])(of [either system]) after allowing [single induc-
tion] to proceed (for [15 minutes]) (also) results (in [increased
reproduction]) (of [both enzymes])

The next left-to-right fst identi�es the following simple verb
clusters in this example, enclosed in f ... g.

(4) [We]f have found g that [subsequent addition](of [the
second inducer])(of [either system]) after f allowing g [single
induction] to proceed (for [15 minutes]) (also) fresultsg (in
[increased reproduction]) (of [both enzymes])

The �nal left-to-right scan identi�es the clauses, enclosed
in < ... >. The main clauses is not enclosed in any brackets.
+ indicates end of a complement. Thus the �nal output is as
follows.

(5) [We] fhave foundg that [subsequent addition](of [the
second inducer])(of [either system]) < after fallowingg [single
induction] to proceed + > (for [15 minutes]) (also) fresultsg
(in [increased reproduction]) + > + (of [both enzymes])

In each one of these phases the longest path criterion is
used. This results in longest simple NPs, simple adjuncts,
simple verb clusters and clauses. While looking for verb com-
plements the longest complement is preferred.
Recently this program was faithfully reconstructed, a col-

laborative e�ort with Phil Hopely, from the original docu-
mentation, which fortunately exists [3] and it is in su�cient
detail to make the reconstruction possible. The reconstructed
parser (now called Uniparse) has also been tested on about 50
sentences from each of the three corpora{Wall Street Journal,
IBM computer manuals, and ATIS.
We will discuss this program focusing on the fst aspects, re-

lating them, where appropriate, to some of the recent work on
fst. We will also briey describe the performance of Uniparse
on the small set of sentences of the three corpora mentioned
above.
Historical note:
The original program was implemented (in the assembly

language) on Univac 1, a single user machine. The machine
had acoustic delay line (mercury delay line) memory of 1000
words. Each word was 12 characters/digits, each character/dig-
it was 6 bits.
Lila Gleitman, Aravind Joshi, Bruria Kau�man, and Naomi

Sager and a little later, Carol Chomsky were involved in the
development and implementation of this program. A brief
description of the program appears in [2] and a somewhat
generalized description of the grammar appears in [1]. This

program is the precursor of the string grammar program of
Naomi Sager at NYU, leading up to the current parsers of
Ralph Grishman (NYU) and Lynette Hirschman (formerly at
UNISYS, now at Mitre Corporation). Carol Chomsky took
the program to MIT and it was used in the question-answer
program of Green, BASEBALL (1961). At Penn, it led to
a program for transformational analysis (kernels and trans-
formations) (1963) and, in many ways, inuenced the formal
work on string adjunction (1972) and later tree-adjunction
(1975).

REFERENCES (for Uniparse)
[1] Zellig S. Harris, String Analysis of Sentence Structure,

Mouton & Co. The Hague, (1962).
[2] Aravind K. Joshi, `Computation of Syntactic Structure',

in Advances in Documentation and Library Science, vol III,
part 2 , Interscience Publishers, (1961).
[3] Transformations and Discourse Analysis Project (TDAP)

Reports, University of Pennsylvania, Reports #15 through
#19, 1959-60. Available in the Library of the National Insti-
tute of Science and Technology (NIST) (formerly known as
the National Bureau of Standards (NBS)), Bethesda, MD.

OTHER REFERENCES
[4] Steven Abney, `Parsing by chunks', in Principle-based

Parsing (eds. Robert Berwick and Steven Abney and Carol
Tenny), Kluwer Academic Publishers, (1991).
[5] Calvin C. Elgot and J.E. Mezzi, `On relations de�ned

by generalized �nite automata', IBM Journal of Research and

Development, 9, (1965).
[6] Lauri Karttunen, `Directed replacement', in Proceedings

of the 34th Annual Meeting of ACL, Santa Cruz, CA, (1996).
[7] Mehryar Mohri, `Finite-state transducers in language

and speech processing', Computational Linguistics, 20:1 1-34,
(1996).
[8] Emmannuel Roche, `Two parsing methods by means

of �nite state transducers', in Proceedings of the 16th In-

ternational Conference on Computational Linguistics (COL-
ING'94), Kyoto, Japan, (1994).
[9] Marcel P. Schutzenberger, `Sur une variante des fonc-

tions s�equentielles, Theoretical Computer Science, (1977).

A Parser from Antiquity 34 Aravind K. Joshi

