
Vectorized Finite State Automata

Andr�as Kornai
IBM Almaden Research Center

650 Harry Road, San Jose, CA 95120

kornai@almaden.ibm.com

Abstract. We present a technique of �nite state parsing
based on vectorization and describe the application of this
technique to a well-known problem of natural language pro-
cessing, that of extracting relational information from English
text. We de�ne Vectorized Finite State Automata, the theo-
retical model behind the applied system, and discuss their
signi�cance.

0 Introduction

One of the persistent problems in building �nite automata on
the large scale required by actual applications is that the prod-
uct and powerset constructions routinely used to implement
intersection and nondeterminism can, in a few steps, increase
the size of the state space beyond reasonable bounds. This
paper will describe how to avoid this problem by structuring
the state space as a (generalized) �nite vector space. Section 1
of the paper introduces the problem by means of a highly
arti�cial but simple example, informally presents the basic
idea of Vectorized Finite State Automata (VFSA), and out-
lines the VFSA solution for this particular problem. Section 2
presents an overview of NewsMonitor, a system extracting
relational information from English text, with particular em-
phasis on the VFSA pattern matching engine around which
NewsMonitor is built. Section 3 provides the formal de�ni-
tion of VFSA, discusses their properties, and compares them
to Register Vector Grammars (RVGs) [3]. The theoretical im-
plications of the work are discussed in Section 4.

Broadly speaking, there are three ways vectorization can
enter the standard setup for �nite state language modeling.
First, the alphabet itself can be composed of n-tuples, a con-
ceptualization particularly useful for n-ary regular relations
and n-way �nite automata [9]. Second, the alphabet symbols
in a single dimension can be thought of as vectors composed
of (binary) features, as is commonly done in Prague-style and
in generative phonology [4],[5]. Third, the state space itself
can be conceptualized as a vector space, as in RVGs. In this
paper we explore this third possibility in the VFSA frame-
work that also encompasses what we take to be the crucial
aspects of the �rst and the second kinds of vectorization.

One way to specify an n-ary regular relation is by an n-
way �nite state transducer (FST) de�ned by a �nite set S
of states, some designated as initial/�nal, and a �nite list L
of arcs, where each arc carries an n-tuple of symbols. Other
than providing convenient labels for beginning and endpoints
of arcs, in practice states play so little role that in tight imple-

mentations they are often entirely omitted for the sake of ef-
fective storage. Here we will consider the possibility of endow-
ing the state space with a hypercube-like structure by means
of a set of (boolean valued) functions called 
ags or features.
(The term `
ag' is more common in syntax and computer sci-
ence, the term `feature' is more common in phonology { here
we use them interchangeably.) In phonology, the goal of such
an embedding or feature decomposition is to achieve a high
degree of notational compactness [11]. Here we show that no-
tational compactness is more than an abstract goal, inasmuch
as feature decomposition, properly implemented, can lead to
appreciable savings in memory requirements. But if tightly
organized FSTs do not even mention state information, what
di�erence can encoding the states as feature vectors make?
The answer is that with appropriately selected features not
only the states, but also the arcs can be omitted from the
representation.

1 The problem

As any practicing computational linguist knows, writing and
debugging grammars is an expensive, time-consuming pro-
cess. With (augmented) context-free grammars, as more and
more e�ort is extended in this direction and the coverage of
the grammar improves, the runtime performance of grammat-
ical engines becomes worse and worse. While this problem is
not unknown in other areas of AI, nowhere is it as acute as in
natural language processing. One way out is to strictly limit
runtime computation to the basic operation of following a
prearranged chain of pointers along the direction dictated by
the input. This requires creating all possible chains at compile
time, and collecting them in one large state machine which,
if memory poses no constraints, can be implemented in a fast
and e�cient manner by each state pointing to the transition
function out of that state, and each transition function re-
turning a pointer to the next state.

Since memory is usually a scarce resource, sophisticated im-
plementations permit runtime operations slightly more com-
plex than dereferencing, e.g. computing byte o�sets, in return
for signi�cantly more compact storage of the state machine.
But, in the end, all e�orts to precompute all paths and store
them individually are doomed by the ever-increasing complex-
ity of the paths that must be considered as the coverage of
the grammar increases. This leaves no alternative but to trade
in more runtime complexity in return for space savings. The
vectorization method described in this paper relies on bit-

c
 1996 A. Kornai
Proceedings of the ECAI 96 Workshop
Extended Finite State Models of Language
Edited by A. Kornai.



�eld operations that are either directly available as machine
instructions or can be built from a few machine instructions,
thereby making the system inherently fast.

As an introduction to VFSA in this Section we discuss a
simple problem, that of a 32-bit binary incrementer. A brute
force statement of the incrementer as a 2-way relation, with
232 disjuncts, would lead to a transducer of unmanageable
complexity. What makes this example particularly hard to
express by the standard mechanism is its lack of locality: be-
cause input is scanned left to right but the carry moves right
to left, we need to delay output of the �rst result bit pos-
sibly until after the last input bit is received. Before mini-
mization, we must therefore assign a separate state to each
bit-combination, yielding 232 states and the same number of
arcs. Needless to say, much more compact solutions are pos-
sible, but the size of the unminimized transducer is so over-
whelming that using it as a basis for minimization is out of
the question. In contrast, vectorization will provide a solution
with trivial space requirements.

The informal de�nition of a Vectorized Finite State Au-
tomaton (VFSA) begins with two �nite sets of variables x0;
: : : ; xk and y0; : : : ; yl called internal and external variables re-
spectively. For now we assume these to be boolean variables,
the general case will be discussed in Section 3. A full binding
of the internal variables is called a state: those states that have
x0 = 1 are called initial, those that have xk = 1 are called �-
nal. A partial binding of the external variables is called a letter
of the alphabet. In general, the distinction between internal
and external variables concerns only the manner in which new
input is read, and we will use the term symbol to mean partial
bindings of the full set of variables.

The uni�cationaUb of two symbols a and b is de�ned in the
usual way as the smallest partial binding that extends both
a and b. Since uni�cation, a symmetric operation, will fail if
a and b are incompatible, we also de�ne overwriting a by b,
aOb, an asymmetric operation that never fails. If x is free in
a and free in b, it remains free in aOb. If x was free in one of
a or b it takes the same value as it would in aUb. But if x was
bound to di�erent values in a and in b, the latter value pre-
vails. We say that an arc from state u to state v is sanctioned
by a Pattern-Action (PA) statement (p;a) if uUp exists and
v = uOa. Transition along a sanctioned arc consumes the
external portion of the pattern symbol, but maintains (an
extension of) the action symbol as a record of the current
state(s) of the VFSA. By replacing pattern and action sym-
bols in the de�nition by n-tuples we obtain Vectorized Finite
State Relations (VFSRs), but this o�ers no further general-
ity because vectors of vectors in this case are simply longer
vectors (or matrices) having �xed dimension.

To model the incrementer we need 67 internal features
x0; : : : ; x66, with x2i�1 storing the the i-th position of the
input and x2i monitoring progress, (1 � i � 32). A single ex-
ternal feature y serves as the feature encoding of the current
bit. We �rst initialize the progress 
ags to 1 by the PA state-
ment (x0 = 1; x0 = 0; x65 = 0; x66 = 0; x2 = 1; : : : ; x64 = 1).
Note that this statement consumes no input and thus could
�re at any time. However, it requires an initial state (x0 = 1)
and produces a non-initial state (x0 = 0) and will therefore
�re only once, at the beginning. To consume the input we
have 32 PA statements of the form (x2i = 1; x65 = 0; x2i�1 =
y; x2i = 0). By de�nition, PA rules in a VFSA are scanned in

linear order until a match is found (at which point the rule
�res, new input is read, and the rule search restarts at the
�rst rule) so in principle any of these 32 rules could �re at
any time.

In this particular example, progress 
ags are employed just
to make sure that the ith rule can only apply to the ith bit of
input. Once the input is consumed, we set x65 to 1 by the rule
(x0 = 0; x2 = 0; : : : ; x64 = 0;x64 = 1;x65 = 1). Starting with
x64 we reuse the progress 
ags to monitor the carry. We need
31 PA statements of the form (x2i�2 = 0; x2i�1 = 1; x2i =
1; x65 = 1;x2i�2 = 1; x2i�1 = 0) to preserve, and another 31
of the form (x2i�1 = 0; x2i = 0; x65 = 1;x2i�1 = 1; x2i =
1; x65 = 0) to absorb the carry. Unless we are prepared to
reuse the x0 
ag, ordinarily reserved for initial states, the
rules a�ecting the �rst position needs to be stated separately
in each set: for carry we have (x0 = 0; x1 = 1; x2 = 1; x65 =
1; x1 = 0; x66 = 1) and (x0 = 0; x1 = 0; x2 = 1; x65 = 1;x1 =
1; x66 = 1) and for the case when the carry was absorbed
earlier we have (x0 = 0; x2 = 1; x65 = 0; x66 = 1).

Altogether, a set of about a hundred PA rules, each requir-
ing less than a hundred bytes of storage, plus the �xed over-
head of the rule interpreter, is all that is required to store and
execute the incrementer. Furthermore, the approach taken
here smoothly extends to 32-bit (or even longer) adders. A
carefully minimized and compressed 32-bit incrementer could
possibly be loaded in the gigabyte memory we can reasonably
assume for a large computer today. But a 2-way �nite automa-
ton with two successive 32-long bitstrings on the upper tape
and a single 32-long bitstring, the sum, on the lower tape,
would be hard to �t in, no matter how carefully minimized
or compressed, while a VFSA performing the same function
is still very small.

Though binary incrementers and adders give a good intu-
itive idea of the amount of space savings made possible by
vectorization, they are less than fully convincing in a natural
language context, where there is no a priori guarantee that
a good feature analysis can be found. Binary integers lend
themselves naturally to feature decomposition, while morpho-
logical or phonological units rarely do, as can be seen from
the large number of competing feature decomposition schemes
proposed in the linguistic literature. Therefore, a true test of
the system is possible only in the context of an actual natural
language processing task, such as the `business intelligence'
task to which we now turn.

2 NewsMonitor

In this section we describe NewsMonitor, a high speed high
performance shallow semantic analyzer built in 1990 for ex-
tracting relational information from English text.

2.1 The task

Starting in the mid-eighties, Brattle Software and later MAD
Intelligent Systems attempted to develop an integrated in-
formation environment for portfolio managers. In addition
to the Dow Jones ticker tape and other real-time indica-
tors of �nancial performance, the system also contained a
batch component called RelationalText [13], which analyzed
the Wall Street Journal for relational information deemed
highly signi�cant for portfolio managers: who is where? and

Vectorized Finite State Automata 37 A. Kornai



who bought what? The former task involved the identi�cation
of PCT triples i.e. relational triples composed of Person, Com-
pany, and Title information, the latter (never implemented)
would have identi�ed mergers and acquisitions in the form of a
(Buyer, Seller, Terms) triple. RelationalText was already over-
whelmed by the PCT task, which involved extracting triples
such as (Carol Dwyer, ETS, senior development leader)

from sentences such as the following:

\The evaluation may extend over a period of time for
a prospective teacher, giving states a much better sense
of professional development," said Carol Dwyer, a senior
development leader for the Educational Testing Service.

Given the average sentence length in the WSJ, and given
the fact that a deep analysis of every sentence was attempted,
RelationalText, a system very typical of the sophisticated
parsers deployed in the late eighties, took 36 hours for a sin-
gle issue on a high-end Symbolics. Since the WSJ is available
from the Dow Jones newswire three hours before the markets
open on the East Coast, 36 hours of parsing time was not
acceptable, and an initial target of two hours per issue was
set for the NewsMonitor system described here.

2.2 System architecture

In 1990, when we designed NewsMonitor, the idea of replacing
RelationalText by a lightweight `lazy' parser based on �nite
state pattern matching seemed somewhat heretical, but the
results were telling: NewsMonitor required only 30 minutes
on a Sparc1 for a single issue of the WSJ. The bulk of this
time was actually spent in several separate modules preceding
the VFSA system that performed the extraction of PCT data.
NewsMonitor had a simple pipeline architecture involving the
following stages:

Dow Jones wire

cleaner

article-size �les

table-marker

tables and paragraphs marked

word-breaker

fully tagged text

shortlex

bit vector sequence

matcher

PCT triples

exporter

Informix DB

Figure 1. Main stages of the NewsMonitor pipeline

Let us discuss the various stages (given in boxes in Fig. 1) and
intermediary representations (given in italics in Fig. 1) in their
turn. First, the data coming from the Dow Jones wire must
be cleaned of line noise and separated into articles. Devoting
a separate cleaner module to this task has the advantage
that transmission could be restarted at any time (a frequent
necessity because of the line noise) and earlier articles can be

sent to subsequent processing stages while the later ones are
still downloading.

In the second stage numerical tables, very frequent in the
WSJ and obviously devoid of PCT information, are removed,
and tabs and other formatting are replaced by explicit SGML
style marking of the beginning and end of paragraphs. Since
sentence boundaries are not indicated by formatting and can
not be trivially inferred from punctuation, table-markerdoes
not parse the paragraphs into sentences.

In the third stage a lex-based tokenizer called word-breaker

deals with capitalization, punctuation, numerals, and all non-
alphabetic characters, which are replaced by SGML-style tags
such as the following:

C1 initial uppercase

C2 mixed case

C3 all uppercase

OP open parenthesis

OQ open double quote

IO inner open quote

MO money: $, US$, HK$, sterling sign, etc.

NU contains digit(s)

IT italicized in print

CM `,' comma

MD `--' em-dash

Figure 2. Typical word-level SGML tags

In keeping with the `lazy' spirit of the design, lexical lookup
is divided into two steps. First, in stage four, a very fast hash-
based lexicon called shortlex is searched for frequent items,
function words, the SGML tags that were created in the pre-
ceding stage, and in general for all formatives that serve as
pivots for the pattern matching performed. The second step
of lexical lookup (not shown in Fig. 1) involves consulting
the long lexicons, including a more traditional lexicon of
80,000 words. This is viewed as a last resort, to be invoked
only if the analysis based on shortlex output indicates a de�-
nite need. Unlike the short lexicon, which is tightly organized
and highly speci�c to the WSJ (it has only 6,300 words but
yields over 85% coverage of dictionary words on any issue),
the long lexicons are part of the database system and include
general lists of personal names, company names, and place
names (the latter not directly required by the task, but nec-
essary for resolving ambiguities) largely absent from standard
dictionaries.

The results of shortlex lookup are bit-vectors carrying a
complex system of 
ags, and pointers to an array of the ascii
strings left by the tokenizer after the removal of punctuation.
This array is particularly useful for identifying di�erent occur-
rences of the same entity, e.g. the Mr. Henderson appearing
in one paragraph with the John Henderson appearing in an-
other. Because the use of such pointers technically takes the
system out of the �nite state domain, we will concentrate here
on the strictly �nite state aspects of the pattern matcher and
in particular on the system of 
ags used, and return to the
issues raised by the ascii array in Section 3.3.

2.3 The VFSA pattern matcher

The full array of 
ags is divided into global, local, and work-

space 
ags. Global 
ags correspond to lexical properties of the

Vectorized Finite State Automata 38 A. Kornai



tokens, e.g. whether they are nouns or verbs, or whether they
appear in a particular lexicon. Local 
ags correspond to posi-
tional properties, e.g. whether a token is followed by punctua-
tion, is immediately preceded by a title such asMrs, and so on.
Finally, workspace 
ags are assigned to all properties estab-
lished in the course of the analysis, e.g. whether a certain word
is the last word of a company name. In the incrementer ex-
ample of Section 1, the odd numbered 
ags x1; : : : ; x63 would
be global, the even numbered 
ags x2; : : : ; x64 would be local,
and x0; x65 and x66 would be workspace 
ags. Presenting the
full system of 
ags and PA rules used in the matcherwould re-
quire more space than we have here, but a few salient aspects
are worth noting.

� The system encourages a grammar-writing style that em-
bodies a qualitative theory of evidence combination. For
each 
ag where probabilistic inferences are critical, partic-
ularly for domain delimiters like \end of company name", a
small set of con�dence
ags is maintained to encode whether
a hard decision has been reached, whether the current set-
ting of the 
ag is regarded as somewhat probable, very
probable, etc. A quantitative theory of evidence combina-
tion using e.g. (log) probabilities would be much harder to
implement. As the example in Section 1 shows, the VFSA
architecture does not make it impossible to perform arith-
metic operations on numerical quantities, but it clearly dis-
courages such e�orts.

� The system encourages a case grammar or valence-style
analysis [14], with separate 
ags for each slot that can be
�lled. Out of a universal frame limited to a single byte (8
deep cases, only 7 actually used) the lexical entries of verbs
and predicate nominals mask some as optional (this re-
quires a single byte) and some of these are further masked
as obligatory (requiring another byte). In the end, results
are shipped out to the relational database by inspecting
the status (and associated con�dences) of the Person, Com-
pany, and Title 
ags, and locating the left and right bound-
ary markers associated with these.

� The system encourages a highly lexical style of analysis,
with ` �X features' of lexical categories [6] applied through-
out. Over 70 categories are used, and the majority of these
are highly speci�c to the task. For example, the lexical 
ag
\company class" would be set for entries such as Incorpo-
rated or Limited but not for Telecom. Though theoretical
linguists tend to regard such �ne distinctions as irrelevant
to Universal Grammar (UG), it is our contention that any
theory of UG incapable of furnishing a mechanism for mak-
ing and maintaining these and similar distinctions is inca-
pable of modeling human linguistic competence.

2.4 Performance

The performance of NewsMonitor surpassed that of Relation-
alText, which embodied hundreds of rules and several man-
years of grammar development, at a very early stage, when
NewsMonitor had only only three sets of rules. The �rst News-
Monitor ruleset centered on the keyword Mr., the second on
the keyword said, and the third on a di�erent pattern involv-
ing Mr. Altogether, seven rule-sets were implemented, yield-
ing PCT triples with 97% precision at 65% recall, and requir-
ing less than 3 minutes CPU time per issue (this �gure ex-
cludes shortlex lookup and the stages preceding, but includes

longlex lookups). To put these �gures in perspective, note
that major system such as RelationalText never progressed
beyond 60% precision at 30% recall. GE's SCISOR [7] had
at the time 80-90% combined recall and precision, a result
that has not been signi�cantly improved upon in the past �ve
years by any system performing detail parsing. The VFSA
architecture thus appears competitive with other paradigms
of grammar development currently in use.

3 Formal properties of VFSA

In this section we will go beyond the 
at arrays that were
actually implemented in the matcher stage of the NewsMoni-
tor system and formally de�ne VFSA in a manner embodying
other structures as well. In 3.1 we consider the individual di-
mensions of the vectors on their own. VFSA will be de�ned
in 3.2 simply by gathering the various dimensions together.
In 3.3 we compare and contrast VFSA to RVGs.

3.1 Poset-based dimensions

Careful analysis of our �rst example shows that restricting
the variables to boolean is not in fact necessary: within a
single dimension, variables can range over any ground set G
where pattern matching and overwriting are meaningful op-
erations. Since pattern matching need not succeed, G need
not be a semilattice: in the simplest possible de�nition G

would be a �nite set composed of elements gi with uni�ca-
tion giUgj de�ned to yield gi if i = j and to fail otherwise,
and overwriting giOgj de�ned to yield gj always. If we con-
sider a monomial x over G, these operations are extend by
giUx = xUgi = giOx = xOgi = gi; xUx = xOx = x. We can
also add a special symbol �x to denote failure, so that U is no
longer a partial operation. For any set of symbols G, we will
denote by G0 the set obtained by adjoining these two special
elements.

For the boolean case (two-member ground structure) we
thus obtain a 4-member uni�cation (join) (semi)lattice G0

(2)

with x at the bottom, �x at the top, and the two values g0 =
0 and g1 = 1 at the middle level of the `diamond' Hasse-
diagram. Note that the analogous structureG0

(3) built on three
ground elements will not be modular. In addition to the G0

(n)

for n � 2, we should also mention the degenerate structures
G0

(1) and G0

(0). The former is a three-member chain and the
latter is a two-member chain, with x at the bottom and �x
at the top. G0

(1) provides a reasonable model of the unary
features (privative oppositions) used in phonological theory,
and G0

(0) is perhaps a good model of the monotonic features
sometimes found in computational phonology [1], because the
failure symbol can only be turned on once in the course of a
derivation.

In a phonological setting we would also �nd gradual opposi-
tions such as vowel height, which are best modelled as chains
(fully ordered sets) of ground values. In the system described
in Section 2, �nite chains of linearly ordered values between 0
(no con�dence) and 1 (full con�dence) have repeatedly shown
themselves to be useful as coe�cients to hard boolean 
ags,
because matching everything at or above a prescribed con-
�dence value is often the key to rules that add signi�cantly
to recall but could not be stated on hard 
ags without great
loss in precision. With these uses in mind we de�ne a single

Vectorized Finite State Automata 39 A. Kornai



dimension of a VFSA to be any �nite partially ordered set G,
and de�ne G0 as containing two additional elements, x which
is smaller than all elements of G and �x which is larger. When
we consider several dimensions Gi (or Hj) each endowed with
its own partial order, we keep the adjoined symbols xi; �xi (or
yj ; �yj) distinct from one another.

3.2 De�nition and discussion

Formally, a Vectorized Finite State Automaton is de�ned as
a quintuple (V; F;S; A;P ) where V =

Qk

i=0
G0

i is the set of
state vectors, F � V is the set of f inal (accepting) states,

S 2 V is the start state, A =
Ql

j=0H
0

j is the alphabet, and

P is a linearly ordered list of pattern-action statements (pro-
ductions) in the form (p; a), where p 2 V �A and a 2 V . For
a VFSA in state s (note that s includes the symbol currently
scanned), either s � pi for some rule in P , or the automaton
halts (failure). If s � pi is true for several patterns in P; the
action part of the �rst of these is executed and new input is
read. To execute an action a on state s we inspect the di-
mensions Gi individually: either si and ai are comparable, in
which case the result is max(si; ai), or they are not, in which
case the result is ai.

To bring this formal de�nition in harmony with the infor-
mal de�nition given in Section 1, we would need to introduce
two more 
ags for distinguishing initial and �nal states, a
trivial excercise. Since they are de�ned here in the manner
of �nite automata, VFSA are obviously FSA. Conversely, ev-
ery ordinary FSA can be equivalently de�ned as a VFSA by
assigning separate 
ags to every state and to every symbol
in the alphabet, and adding a PA rule for each transition.
Since VFSA operate on vectors having �xed dimensions in a
length-preserving manner, there is no need to keep VFSA and
VFSR separate: both are weakly equivalent to ordinary FSA,
and length-preserving FSRs, the same closure properties ob-
tain, and the same constructions can be carried through in
the vectorized case as in the standard case.

Needless to say, no computational advantage could be claim-
ed for mechanically generated vectorization that assigns sepa-
rate 
ags for everything. Rather, the claimed advantage rests
on the observation that natural language constructs are ame-
nable to feature decomposition to begin with, and that VFSA
can exploit this decomposition while standard FSA can not.
In particular, the intersection of machines, normally leading
to a multiplicative increase in the state space, will cause only
an additive increase in the size of the 
ag arrays employed in
VFSA. To make sure that the production set will also grow
additively, we need an extra 
ag for each intersection. As for
nondeterminism, the primary cause for exponential increase
in the state space is the need to maintain partial results during
the computation. FSA state space is a very ine�ective mem-
ory device: to keep just eight bits around we need to increase
its size by a factor of 256. In contrast, VFSA state space is
designed to encourage keeping partial results around, with no
more than two bits required to keep a single 
ag, a content bit
which is 0 or 1 depending on whether the 
ag is negative or
positive, and a control bit which is 0 for free and 1 for bound
variables. (As a practical matter, content and control bits are
best kept in separate arrays, rather than alternating.)

In principle, the VFSA architecture would permit overload-
ing the 
ags, so the 50% overhead entailed in the use of sepa-

rate content and control bits could be decreased. But in prac-
tice overloading serves only to protect a resource, 
ag dimen-
sion, which is not particularly scarce, and generates savings
only at the cost of considerably decreased maintainability.
The constituting factor of a VFSA is that the alphabet, the
states, and the arcs are subject to one and the same feature
analysis, and by overloading the 
ags the clarity and purpose
of this analysis would be lost.

3.3 VFSA and RVGs

Though VFSA are equivalent in generative capacity to FSA,
their closest conceptual relatives are not the standard �nite
automata but the Register Vectors Grammars (RVGs) in-
troduced in [3] by Blank, who discusses how a number of
important syntactic phenomena including wh-movement and
limited self-embedding can be analyzed by keeping partial re-
sults around. The central computational mechanism of VFSA,
namely the use of asymmetric (overwriting) operations guided
by template matching is already present in [3] (and possibly
already in the unpublished work of Kunst cited there). We
did not follow Blank in his use of explicit side-e�ecting (called
actions there), and we use �X features for lexical categories.
But these are mostly cosmetic di�erences, and for the most
part VFSA can be thought of RVGs without the restriction
to boolean features.

Is it really necessary to move away from the boolean restric-
tion? Outside the domain of names, all partial orders that had
some practical use seem to lead to a notion of (co)uni�cation
that satis�es the usual distributivity axioms, meaning that
Stone's theorem (see e.g. [2]) guarantees that a feature de-
composition will exist. So for the most part �xed groups of
RVG 
ags can be used for encoding multi-valued features with
very little overhead. With names, however, a great deal more
arbitrariness is present, and feature decomposition o�ers no
leverage in capturing facts such that a relation obtains be-
tween Bank of America and BOFA but not between Common-
wealth of Massachusetts and *COFM. In other words, some-
thing like NewsMonitor's ascii arrays will always be necessary,
and VFSA make a virtue out of this necessity.

Another important di�erence between the two systems fol-
lows from the fact that our goal is not detail parsing but the
extraction of relational information. Because relational infor-
mation is often spread over several sentences, the matcher
makes the computationally convenient, but psychologically
obviously unrealistic assumption that the whole text, more
precisely the 
ag structures associated with every word, can
be kept in memory for the whole time of the analysis. In ef-
fect, state is kept not in a one dimensional array, the register,
but in a large array of as many vectors as there are words.
This has great impact on the style of the grammar. A sin-
gle register encourages a local view and a temporal metaphor
of updating the state, while the simultaneous use of several
vectors encourages a global view and the spatial metaphor of
spreading information across states. For RVGs, the kind of
macro expansion system described in [3] makes the best sense
as rule compiler, since the goal there is to collapse more com-
plex state changes into a single unit. In contrast, the pattern
matcher used in NewsMonitor employs awk/sed style rules for
manipulating the state space.

Vectorized Finite State Automata 40 A. Kornai



4 Theoretical implications

In this paper we de�ned Vectorized Finite State Automata
and described NewsMonitor, a system extracting relational in-
formation from English text using VFSA-based pattern match-
ing. VFSA could also be used to perform detail parsing of En-
glish sentences, as demonstrated by the RVG work, or even
binary arithmetic, as the example of Section 1 shows, but
information extraction is a particularly challenging domain
where, as the high performance of NewsMonitor shows, the
techniques appropriate for sentential syntax are neither su�-
cient nor necessary,

In earlier work ([8], [10]) we argued that the storage de-
vice required for keeping the dependency information between
the spoken/parsed and the yet unspoken/unparsed parts of a
sentence need not be structured as a stack of potentially un-
bounded depth, but can in fact be limited to hold only a few
data structures of the size and complexity of lexical entries.
Here we permit unlimited interaction between distanct loca-
tions, meaning that a linear workspace (one �xed size vector
for each input word) is kept by the matcher, in principle mak-
ing the system a Linear Bounded Automaton (LBA). Since
many researchers will no doubt have the immediate reaction
that the use of LBA (full context-sensitivity) entails intolera-
ble complexity, it is worth taking a closer look at this matter.

A complexity measure such as the Chomsky-hierarchy is
only as good as its predictions about the complexity of actu-
ally carrying out the computation. Conceptualizing the match-
er as an LBA is misleading, because it updates the array of
vectors in strictly limited �nite state transduction steps and
therefore in e�ect remains a �nite state device for any �xed
array. Since in practice the search patterns are largely or-
thogonal, and the individual searches are blindingly fast, the
standard worst-case results concerning LBA are simply mean-
ingless here. A much better measure of complexity, in the
sense of corresponding to actual computational di�culty, is
provided by the dimension of the state space. At the sentence
level, it is always possible to update the array of vectors in a
single left-to-right pass, storing only a handful of vectors (in
a �xed set of registers) at any given time [12]. According to
the measure of complexity proposed here, this means constant
dimensionality i.e. real-time operation. At the text level, the
matcher requires dimensionality linear in the input length, in-
dicating performance linear in the length of the input text.
This is what we actually observe.

A more general objection to keeping everything in mem-
ory could be made on psychological grounds: a system that
keeps large newspaper articles in working memory is clearly
unable to address the issues of human memory limitations,
and is therefore liable to use startegies that are, from a cog-
nitive standpoint, unjusti�able. We take this objection very
seriously, and would like to avoid the simplistic answer `hey,
it works'. But in our opinion, psychologically realistic pars-
ing is only a remote goal at the present time, and the sci-
enti�c validity of any computational system is not measured
by its direct relevance to cognitive processes, but rather by
the ability of the system to leverage linguistically signi�cant
generalizations into e�cient computational blocks. Since the
pattern matching approach encourages writing grammars in
a case/construction style that is very familiar to grammari-
ans, VFSA meet the adequacy criteria that linguistic theory

currently imposes on a computational system.
If our goal is to build systems incorporating the insights

of theoretical linguistics we should keep in mind that linguis-
tic theory does not end with sentential syntax. In logical se-
mantics the need to maintain and update memory locations
devoted to individuals and to locations (both spatial and tem-
poral) has long been recognized, and the extraction of rela-
tional information is in this sense a semantic task. The VFSA
architecture, by broadening the de�nition of ground sets from
the strictly boolean to anything �nite, creates a mechanism
for maintaining and updating for example person information
by storing them directly in 
ags. The ascii array employed in
NewsMonitor is best thought of as a crude implementation
of a more general system of 
ags tracking individuals. If in
any given discourse only a limited number (determined by
constraints on medium- rather than short-term memory) of
individuals can be actually individuated, the road is open for
an implementation that uses only a single register.

Acknowledgements

Codevelopers and contributors to the NewsMonitor system
included Bich Nguyen <bich@acuson.com>, Darin Okuyama
<okuyama@netcom.com>, and Josef Schreiner. Special thanks
to Stanley Peters <peters@csli.stanford.edu>.

REFERENCES

[1] Steven Bird, Computational Phonology, Cambridge Univer-
sity Press (1995)

[2] Garrett Birkho� and Thomas Bartee,Modern applied algebra

McGraw-Hill, New York (1970)
[3] Glenn David Blank, `A �nite and real-timeprocessor for natu-

ral language',Communications of the ACM 32(10) 1174-1189
(1989)

[4] Colin Cherry, Morris Halle, and Roman Jakobson, `Toward
the logical description of languages in their phonemic aspect',
Language 29 34-46 (1953)

[5] Noam Chomsky and Morris Halle, The Sound Pattern of En-

glish, Harper & Row, New York (1968)
[6] Ray S. Jackendo�, �X Syntax: A Study of Phrase Structure,

MIT Press, Cambridge MA 1977
[7] Paul F. Jacobs and Lisa F. Rau, `SCISOR: extracting in-

formation from on-line news', Communications of the ACM

33(10) 88-97 (1990)
[8] L�aszl�o K�alm�an and Andr�as Kornai, `Pattern matching: a

�nite-state approach to parsing and generation', ms, Institute
of Linguistics, Hungarian Academy of Sciences (1985)

[9] Ronald M. Kaplan and Martin Kay, `Regular models of
phonological rule systems', Computational Linguistics 20(3)
331-378 (1994)

[10] Andr�as Kornai, `Natural Languages and the Chomsky Hier-
archy', in: M. King (ed): Proceedings of the 2nd European

Conference of the Association for Computational Linguistics

1-7 (1985)
[11] Andr�as Kornai, `The generative power of feature geometry',

Annals of Mathematics and Arti�cial Intelligence 8 37-46
(1993)

[12] Andr�as Kornai and Zsolt Tuza, `Narrowness, pathwidth, and
their application in natural language processing', Discrete
Applied Mathematics 36 87-92 (1992)

[13] David McDonald, `Recovering relational information from
text', Brattle Software Technical Report (1989)

[14] Harold L. Somers, Valency and Case in Computational Lin-

guistics, Edinburgh University Press, 1987

Vectorized Finite State Automata 41 A. Kornai


